Does taxonomic diversity in indicator groups influence their effectiveness in identifying priority areas for species conservation?

2008 ◽  
Vol 11 (6) ◽  
pp. 546-554 ◽  
Author(s):  
J. Bladt ◽  
F. W. Larsen ◽  
C. Rahbek
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Bedriñana-Romano ◽  
Rodrigo Hucke-Gaete ◽  
Francisco A. Viddi ◽  
Devin Johnson ◽  
Alexandre N. Zerbini ◽  
...  

AbstractDefining priority areas and risk evaluation is of utmost relevance for endangered species` conservation. For the blue whale (Balaenoptera musculus), we aim to assess environmental habitat selection drivers, priority areas for conservation and overlap with vessel traffic off northern Chilean Patagonia (NCP). For this, we implemented a single-step continuous-time correlated-random-walk model which accommodates observational error and movement parameters variation in relation to oceanographic variables. Spatially explicit predictions of whales’ behavioral responses were combined with density predictions from previous species distribution models (SDM) and vessel tracking data to estimate the relative probability of vessels encountering whales and identifying areas where interaction is likely to occur. These estimations were conducted independently for the aquaculture, transport, artisanal fishery, and industrial fishery fleets operating in NCP. Blue whale movement patterns strongly agreed with SDM results, reinforcing our knowledge regarding oceanographic habitat selection drivers. By combining movement and density modeling approaches we provide a stronger support for purported priority areas for blue whale conservation and how they overlap with the main vessel traffic corridor in the NCP. The aquaculture fleet was one order of magnitude larger than any other fleet, indicating it could play a decisive role in modulating potential negative vessel-whale interactions within NCP.


Oryx ◽  
2014 ◽  
Vol 50 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Igor Berkunsky ◽  
Rosana E. Cepeda ◽  
Claudia Marinelli ◽  
M. Verónica Simoy ◽  
Gonzalo Daniele ◽  
...  

AbstractMonitoring of wild populations is central to species conservation and can pose a number of challenges. To identify trends in populations of parrots, monitoring programmes that explicitly take detectability into account are needed. We assessed an occupancy model that explicitly accounted for detectability as a tool for monitoring the large macaws of Bolivia's Beni savannahs: the blue-throated Ara glaucogularis, blue-and-yellow Ara ararauna and red-and-green macaws Ara chloropterus. We also evaluated the joint presence of the three macaw species and estimated their abundance in occupied areas. We modelled occupancy and detection for the three macaw species by combining several site and visit covariates and we described their conditional occupancy. Macaws occupied two thirds of the surveyed area and at least two species occurred together in one third of this area. Probability of detection was 0.48–0.86. For each macaw species, occupancy was affected by the abundance of the other two species, the richness of cavity-nesting species, and the distance to the nearest village. We identified key priority areas for the conservation of these macaws. The flexibility of occupancy methods provides an efficient tool for monitoring macaw occupancy at the landscape level, facilitating prediction of the range of macaw species at a large number of sites, with relatively little effort. This technique could be used in other regions in which the monitoring of threatened parrot populations requires innovative approaches.


2021 ◽  
Vol 290 ◽  
pp. 112630
Author(s):  
Yixin Diao ◽  
Junjun Wang ◽  
Feiling Yang ◽  
Wei Wu ◽  
Jian Zhou ◽  
...  

EDIS ◽  
2017 ◽  
Vol 2017 (3) ◽  
Author(s):  
Shelly A. Johnson ◽  
Timm Kroeger ◽  
Josh Horn ◽  
Alison E. Adams ◽  
Damian C. Adams

Animals in Florida provide a variety of benefits to people, from recreation (fishing, hunting, or wildlife viewing) to protection of human life and property (oysters and corals provide reef structures that help protect coasts from erosion and flooding). By measuring the economic value of these benefits, we can assign a monetary value to the habitats that sustain these species and assess the value that is lost when development or other human-based activities degrade animal habitat. This 5-page fact sheet presents the results of a study that assessed the value of protecting five animal species in Florida and showed the economic value of protecting animal habitat.


2014 ◽  
Vol 7 (2) ◽  
pp. 159-167
Author(s):  
Kevin Garlan

This paper analyses the nexus of the global financial crisis and the remittance markets of Mexico and India, along with introducing new and emerging payment technologies that will help facilitate the growth of remittances worldwide. Overall resiliency is found in most markets but some are impacted differently by economic hardship. With that we also explore the area of emerging payment methods and how they can help nations weather this economic strife. Mobile payments are highlighted as one of the priority areas for the future of transferring monetary funds, and we assess their ability to further facilitate global remittances.


2011 ◽  
Vol 29 (1-2) ◽  
pp. 10-12 ◽  
Author(s):  
T. N. Kaye ◽  
R. Schwindt ◽  
C. Menke

2016 ◽  
Vol 27 (3-4) ◽  
pp. 47-54
Author(s):  
K. K. Holoborodko ◽  
V. O. Makhina ◽  
K. S. Buchnieva ◽  
O. E. Pakhomov

Floodplain valley of the Dnieper river midstream is a unique natural complex, having a great bìogeographical, ecological, environmental, historical and recreational values. In 1990, the Natural reserve «Dniprovsko-Orilsky» was established within the area. The Natural reserve «Dniprovsko-Orilsky» is environmentally protected site within the Dnipropetrovsk region, Dnipropetrovsk oblast, Ukraine. This reserve occupies part of the Dnieper river valley and marshy and reedy banks of Protovch river (existing bed of Oril river). It was created by Regulation of the Council of Ministers of the USSR of 15 September 1990, No. 262, based on common zoological and ornitological Nature reserves «Taromskì plavni» and «Obukhovskie zaplavy». On the territory of the Natural reserve «Dniprovsko-Orilsky», they were registered 32 Lepidoptera species listed in the List of Threatened Species at different categories (5 species in IUCN Red List ; 18 in Red Data Book of Ukraine; 7 in European Red List of plants and animals endangered on a global scale; 31 in Red Book of Dnipropetrovsk oblast). The main scientific materials were author’s collections from area of research and materials of entomological funds, Department of Zoology and Ecology, Oles Honchar Dnipropetrovsk National University (mostly Memorial Collection of V. O. Barsov). Field surveys covered all the ecosystems basic on size and degree of protection. The author’s researches have conducted over the past decade during annual expeditions to the Reserve. Taxonomic structure of the complex is quite diverse, and represented by all the major families of higher millers and rhopalocera, having protectedstatus. In relation to taxonomy, this complex formed by representatives of five superfamilies (Zyganoidea, Noctuoidea, Bombycoidea, Hesperioidea, Papilionoidea) from 11 families (Zygaenidae, Saturniidae, Sphingidae, Noctuidae Arctiidae Hesperiidae, Papilionidae, Pieridae, Nymphalidae, Satyridae, Lycaenidae). High taxonomic diversity can be explained by unique geographical location of the reserve in azonal conditions of the Dnieper river valley. Such location allows to enter different zoogeographic Lepidoptera groups on the reserve territory. Zoogeographic analysis of species protected within the reserve territory selected 7 basic groups. It was found that most of the globally rare species have Mediterranean origin (39 %); species of Palearctic origin are in second place (22 %); Western Palearctic and Ponto-Kazakh types of areas are same of number of species, and come third (11 %); and others come 17 % (European, Euro-Siberian, and Holarctic). This fauna component is specific due to presence of so-called «northern» species that make up 40 % (representatives of Palearctic, Western Palearctic, Euro-Siberian, European and Holarctic groups). Their existence within the reserve territory is only possible due to development of boreal valley ecosystems. High taxonomic diversity can be explained by unique geographical location of the reserve in azonal conditions of the Dnieper river valley. Such location allows to enter different zoogeographic Lepidoptera groups on the reserve territory. Zoogeographic analysis of species protected within the reserve territory selected 7 basic groups. It was found that most of the globally rare species have Mediterranean origin (39 %); species of Palearctic origin are in second place (22 %); Western Palearctic and Ponto-Kazakh types of areas are same of number of species, and come third (11 %); and others come 17 % (European, Euro-Siberian, and Holarctic). This fauna component is specific due to presence of so-called «northern» species that make up 40 % (representatives of Palearctic, Western Palearctic, Euro-Siberian, European and Holarctic groups). Their existence within the reserve territory is only possible due to development of boreal valley ecosystems.


Sign in / Sign up

Export Citation Format

Share Document