scholarly journals Localized detection of action potential-induced presynaptic calcium transients at aXenopusneuromuscular junction

1997 ◽  
Vol 505 (3) ◽  
pp. 585-592 ◽  
Author(s):  
David A. DiGregorio ◽  
Julio L. Vergara
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Michael A Gaviño ◽  
Kevin J Ford ◽  
Santiago Archila ◽  
Graeme W Davis

Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release.


1999 ◽  
Vol 82 (6) ◽  
pp. 2936-2946 ◽  
Author(s):  
Mario B. Lips ◽  
Bernhard U. Keller

A quantitative analysis of activity-related calcium dynamics was performed in motoneurons of the nucleus hypoglossus in the brain stem slice preparation from mouse by simultaneous patch-clamp and microfluorometric calcium measurements. Motoneurons were analyzed under in vitro conditions that kept them in a functionally intact state represented by rhythmic, inspiratory-related bursts of excitatory postsynaptic currents and associated action potential discharges. Bursts of electrical activity were paralleled by somatic calcium transients resulting from calcium influx through voltage-activated calcium channels, where each action potential accounted for a calcium-mediated charge influx around 2 pC into the somatic compartment. Under in vivo conditions, rhythmic-respiratory activity in young mice occurred at frequencies up to 5 Hz, demonstrating the necessity for rapid calcium elevation and recovery in respiratory-related neurons. The quantitative analysis of hypoglossal calcium homeostasis identified an average extrusion rate, but an exceptionally low endogenous calcium binding capacity as cellular parameters accounting for rapid calcium signaling. Our results suggest that dynamics of somatic calcium transients 1) define an upper limit for the maximum frequency of respiratory-related burst discharges and 2) represent a potentially dangerous determinant of intracellular calcium profiles during pathophysiological and/or excitotoxic conditions.


2020 ◽  
Vol 152 (5) ◽  
Author(s):  
Kris Blanchard ◽  
Javier Zorrilla de San Martín ◽  
Alain Marty ◽  
Isabel Llano ◽  
Federico F. Trigo

In several types of central mammalian synapses, sustained presynaptic stimulation leads to a sequence of two components of synaptic vesicle release, reflecting the consecutive contributions of a fast-releasing pool (FRP) and of a slow-releasing pool (SRP). Previous work has shown that following common depletion by a strong stimulation, FRP and SRP recover with different kinetics. However, it has remained unclear whether any manipulation could lead to a selective enhancement of either FRP or SRP. To address this question, we have performed local presynaptic calcium uncaging in single presynaptic varicosities of cerebellar interneurons. These varicosities typically form “simple synapses” onto postsynaptic interneurons, involving several (one to six) docking/release sites within a single active zone. We find that strong uncaging laser pulses elicit two phases of release with time constants of ∼1 ms (FRP release) and ∼20 ms (SRP release). When uncaging was preceded by action potential–evoked vesicular release, the extent of SRP release was specifically enhanced. We interpret this effect as reflecting an increased likelihood of two-step release (docking then release) following the elimination of docked synaptic vesicles by action potential–evoked release. In contrast, a subthreshold laser-evoked calcium elevation in the presynaptic varicosity resulted in an enhancement of the FRP release. We interpret this latter effect as reflecting an increased probability of occupancy of docking sites following subthreshold calcium increase. In conclusion, both fast and slow components of release can be specifically enhanced by certain presynaptic manipulations. Our results have implications for the mechanism of docking site replenishment and the regulation of synaptic responses, in particular following activation of ionotropic presynaptic receptors.


2000 ◽  
Vol 83 (1) ◽  
pp. 552-562 ◽  
Author(s):  
Andrey Vyshedskiy ◽  
Jen-Wei Lin

Presynaptic calcium influx at the inhibitor of the crayfish neuromuscular junction was investigated by measuring fluorescence transients generated by calcium-sensitive dyes. This approach allowed us to correlate presynaptic calcium influx with transmitter release at a high time resolution. Systematic testing of the calcium indicators showed that only low-affinity dyes, with affinities in the range of micromolar, should be used to avoid saturation of dye binding and interference with transmitter release. Presynaptic calcium influx was regulated by slowly increasing the duration of the action potential through progressive block of potassium channels. The amplitude of the calcium transient, measured from a cluster of varicosities, was linearly related to the duration of the action potential with a slope of 1.2. Gradual changes in potassium channel block allowed us to estimate the calcium cooperativity of transmitter release over a 10-fold range in presynaptic calcium influx. Calcium cooperativity measured here exhibited one component with an average value of 3.1. Inspection of simultaneously recorded presynaptic calcium transients and inhibitory postsynaptic currents (IPSCs) showed that prolonged action potentials were associated with a slow rising phase of presynaptic calcium transients, which were matched by a slow rate of rise of IPSCs. The close correlation suggests that fluorescence transients provide information on the rate of calcium influx. Because there is an anatomic mismatch between the presynaptic calcium transient, measured from a cluster of varicosities, and IPSC, measured with two-electrode voltage clamp, macropatch recording was used to monitor inhibitory postsynaptic responses from the same cluster of varicosities from which the calcium transient was measured. Inhibitory postsynaptic responses recorded with the macropatch method exhibited a faster rising phase than that recorded with two-electrode voltage clamp. This difference could be attributed to slight asynchrony of transmitter release due to action potential conduction along fine branches. In conclusion, this report shows that fluorescence transients generated by calcium-sensitive dyes can provide insights to the properties of presynaptic calcium influx, and its correlation with transmitter release, at a high time resolution.


2001 ◽  
Vol 537 (1) ◽  
pp. 3-16 ◽  
Author(s):  
V. Margaret Jackson ◽  
Stephen J. Trout ◽  
Keith L. Brain ◽  
Tom C. Cunnane

1999 ◽  
Vol 354 (1381) ◽  
pp. 347-355 ◽  
Author(s):  
J. G. G. Borst ◽  
B. Sakmann

We studied the relation between the size of presynaptic calcium influx and transmitter release by making simultaneous voltage clamp recordings from presynaptic terminals, the calyces of Held and postsynaptic cells, the principal cells of the medial nucleus of the trapezoid body, in slices of the rat brainstem. Calyces were voltage clamped with different action potential waveforms. The amplitude of the excitatory postsynaptic currents depended supralinearly on the size of the calcium influx, in the absence of changes in the time–course of the calcium influx. This result is in agreement with the view thact at this synapse most vesicles are released by the combined action of multiple calcium channels.


Sign in / Sign up

Export Citation Format

Share Document