scholarly journals Differentially poised vesicles underlie fast and slow components of release at single synapses

2020 ◽  
Vol 152 (5) ◽  
Author(s):  
Kris Blanchard ◽  
Javier Zorrilla de San Martín ◽  
Alain Marty ◽  
Isabel Llano ◽  
Federico F. Trigo

In several types of central mammalian synapses, sustained presynaptic stimulation leads to a sequence of two components of synaptic vesicle release, reflecting the consecutive contributions of a fast-releasing pool (FRP) and of a slow-releasing pool (SRP). Previous work has shown that following common depletion by a strong stimulation, FRP and SRP recover with different kinetics. However, it has remained unclear whether any manipulation could lead to a selective enhancement of either FRP or SRP. To address this question, we have performed local presynaptic calcium uncaging in single presynaptic varicosities of cerebellar interneurons. These varicosities typically form “simple synapses” onto postsynaptic interneurons, involving several (one to six) docking/release sites within a single active zone. We find that strong uncaging laser pulses elicit two phases of release with time constants of ∼1 ms (FRP release) and ∼20 ms (SRP release). When uncaging was preceded by action potential–evoked vesicular release, the extent of SRP release was specifically enhanced. We interpret this effect as reflecting an increased likelihood of two-step release (docking then release) following the elimination of docked synaptic vesicles by action potential–evoked release. In contrast, a subthreshold laser-evoked calcium elevation in the presynaptic varicosity resulted in an enhancement of the FRP release. We interpret this latter effect as reflecting an increased probability of occupancy of docking sites following subthreshold calcium increase. In conclusion, both fast and slow components of release can be specifically enhanced by certain presynaptic manipulations. Our results have implications for the mechanism of docking site replenishment and the regulation of synaptic responses, in particular following activation of ionotropic presynaptic receptors.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Michael A Gaviño ◽  
Kevin J Ford ◽  
Santiago Archila ◽  
Graeme W Davis

Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release.


2015 ◽  
Vol 112 (25) ◽  
pp. E3291-E3299 ◽  
Author(s):  
Irena Vertkin ◽  
Boaz Styr ◽  
Edden Slomowitz ◽  
Nir Ofir ◽  
Ilana Shapira ◽  
...  

Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABAA, receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABAB receptor (GABABR) blockade or genetic deletion of the GB1a receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABABRs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB1a-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB1a intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the CaV2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB1b-containing receptors. Thus, GABABRs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABABR as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABABRs.


2000 ◽  
Vol 83 (1) ◽  
pp. 552-562 ◽  
Author(s):  
Andrey Vyshedskiy ◽  
Jen-Wei Lin

Presynaptic calcium influx at the inhibitor of the crayfish neuromuscular junction was investigated by measuring fluorescence transients generated by calcium-sensitive dyes. This approach allowed us to correlate presynaptic calcium influx with transmitter release at a high time resolution. Systematic testing of the calcium indicators showed that only low-affinity dyes, with affinities in the range of micromolar, should be used to avoid saturation of dye binding and interference with transmitter release. Presynaptic calcium influx was regulated by slowly increasing the duration of the action potential through progressive block of potassium channels. The amplitude of the calcium transient, measured from a cluster of varicosities, was linearly related to the duration of the action potential with a slope of 1.2. Gradual changes in potassium channel block allowed us to estimate the calcium cooperativity of transmitter release over a 10-fold range in presynaptic calcium influx. Calcium cooperativity measured here exhibited one component with an average value of 3.1. Inspection of simultaneously recorded presynaptic calcium transients and inhibitory postsynaptic currents (IPSCs) showed that prolonged action potentials were associated with a slow rising phase of presynaptic calcium transients, which were matched by a slow rate of rise of IPSCs. The close correlation suggests that fluorescence transients provide information on the rate of calcium influx. Because there is an anatomic mismatch between the presynaptic calcium transient, measured from a cluster of varicosities, and IPSC, measured with two-electrode voltage clamp, macropatch recording was used to monitor inhibitory postsynaptic responses from the same cluster of varicosities from which the calcium transient was measured. Inhibitory postsynaptic responses recorded with the macropatch method exhibited a faster rising phase than that recorded with two-electrode voltage clamp. This difference could be attributed to slight asynchrony of transmitter release due to action potential conduction along fine branches. In conclusion, this report shows that fluorescence transients generated by calcium-sensitive dyes can provide insights to the properties of presynaptic calcium influx, and its correlation with transmitter release, at a high time resolution.


1999 ◽  
Vol 354 (1381) ◽  
pp. 347-355 ◽  
Author(s):  
J. G. G. Borst ◽  
B. Sakmann

We studied the relation between the size of presynaptic calcium influx and transmitter release by making simultaneous voltage clamp recordings from presynaptic terminals, the calyces of Held and postsynaptic cells, the principal cells of the medial nucleus of the trapezoid body, in slices of the rat brainstem. Calyces were voltage clamped with different action potential waveforms. The amplitude of the excitatory postsynaptic currents depended supralinearly on the size of the calcium influx, in the absence of changes in the time–course of the calcium influx. This result is in agreement with the view thact at this synapse most vesicles are released by the combined action of multiple calcium channels.


2020 ◽  
Vol 117 (51) ◽  
pp. 32701-32710
Author(s):  
Mahalakshmi Somayaji ◽  
Stefano Cataldi ◽  
Se Joon Choi ◽  
Robert H. Edwards ◽  
Eugene V. Mosharov ◽  
...  

α-Synuclein is expressed at high levels at presynaptic terminals, but defining its role in the regulation of neurotransmission under physiologically relevant conditions has proven elusive. We report that, in vivo, α-synuclein is responsible for the facilitation of dopamine release triggered by action potential bursts separated by short intervals (seconds) and a depression of release with longer intervals between bursts (minutes). These forms of presynaptic plasticity appear to be independent of the presence of β- and γ-synucleins or effects on presynaptic calcium and are consistent with a role for synucleins in the enhancement of synaptic vesicle fusion and turnover. These results indicate that the presynaptic effects of α-synuclein depend on specific patterns of neuronal activity.


1991 ◽  
Vol 2 (11) ◽  
pp. 915-925 ◽  
Author(s):  
S F Preston ◽  
R I Sha'afi ◽  
R D Berlin

Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.


2006 ◽  
Vol 96 (6) ◽  
pp. 2868-2876 ◽  
Author(s):  
Ron L. P. Habets ◽  
J. Gerard G. Borst

We studied the contribution of a change in presynaptic calcium influx to posttetanic potentiation (PTP) in the calyx of Held synapse, an axosomatic synapse in the auditory brain stem. We made whole cell patch-clamp recordings of a principal cell after loading of the presynaptic terminal with a calcium dye. After induction of PTP by a high-frequency train of afferent stimuli, the Fluo-4 fluorescence transients evoked by an action potential became on average 15 ± 4% larger ( n = 7). Model predictions did not match the fluorescence transients evoked by trains of brief calcium currents unless the endogenous calcium buffer had low affinity for calcium, making a contribution of saturation of the endogenous buffer to the synaptic potentiation we observed in the present experiments less likely. Our data therefore suggest that the increase of release probability during PTP at the calyx of Held synapse is largely explained by an increase in the calcium influx per action potential.


Sign in / Sign up

Export Citation Format

Share Document