scholarly journals Effect of renal perfusion pressure on renal function, renin release and renin and angiotensinogen gene expression in rats

1999 ◽  
Vol 520 (1) ◽  
pp. 261-269 ◽  
Author(s):  
S. Mostafa Shid Moosavi ◽  
Edward J. Johns
1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


1995 ◽  
Vol 268 (2) ◽  
pp. F296-F301
Author(s):  
E. W. Quillen ◽  
I. A. Reid

Studies were performed to determine whether intravertebral angiotensin II infusion (iva ANG II) decreases renin release by increasing renal perfusion pressure (RPP) and to investigate possible effects of iva ANG II on renal function. RPP was electronically servocontrolled in 12 conscious dogs equipped with chronic vascular catheters and a suprarenal aortic balloon constrictor while iva ANG II was infused bilaterally for 60 min at 0.33 ng.kg-1.min-1. Without servocontrol, iva ANG II increased mean arterial pressure (MAP) from 101 +/- 4 to 106 +/- 5 mmHg, urine flow (V) from 0.36 +/- 0.03 to 0.45 +/- 0.04 ml/min, and sodium excretion (UNaV) from 36.2 +/- 7.0 to 62.7 +/- 6.6 mumol/min. Plasma renin activity (PRA) decreased from 6.9 +/- 0.7 to 5.0 +/- 0.6 ng ANG I.ml-1.3 h-1. With servocontrol, iva ANG II increased MAP from 102 +/- 4 to 109 +/- 5 mmHg while RPP remained constant with a variation of less than +/- 1 mmHg. PRA did not change significantly (5.9 +/- 0.3 to 7.0 +/- 0.7 ng ANG I.ml-1.3 h-1). V decreased from 0.33 +/- 0.02 to 0.26 +/- 0.01 ml/min, and UNaV decreased from 49.0 +/- 5.7 to 29.7 +/- 4.4 mumol/min. The data provide evidence that iva ANG II decreases renin release by increasing RPP and stimulating the renal baroreceptor and/or the macula densa mechanisms. In addition, at constant RPP, ANG II exerts a central action to decrease UNaV.


1984 ◽  
Vol 247 (3) ◽  
pp. R546-R551 ◽  
Author(s):  
D. Villarreal ◽  
J. O. Davis ◽  
R. H. Freeman ◽  
W. D. Sweet ◽  
J. R. Dietz

This study examines the role of the renal prostaglandin system in stimulus-secretion coupling for renal baroreceptor-dependent renin release in the anesthetized rat. Changes in plasma renin activity (PRA) secondary to suprarenal aortic constriction were evaluated in groups of rats with a single denervated nonfiltering kidney (DNFK) with and without pretreatment with meclofenamate. Suprarenal aortic constriction was adjusted to reduce renal perfusion pressure to either 100 or 50 mmHg. In addition, similar experiments were performed in rats with a single intact filtering kidney. Inhibition of prostaglandin synthesis with meclofenamate failed to block or attenuate the increase in PRA in response to the decrement in renal perfusion pressure after both severe and mild aortic constriction for both the DNFK and the intact-kidney groups. The adequacy of prostaglandin inhibition was demonstrated by complete blockade with meclofenamate of the marked hypotensive and hyperreninemic responses to sodium arachidonate. The results in the DNFK indicate that in the rat, renal prostaglandins do not function as obligatory mediators of the isolated renal baroreceptor mechanism for the control of renin release. Also the findings in the intact filtering kidney suggest that prostaglandins are not essential in the renin response of other intrarenal receptor mechanisms that also are stimulated by a reduction in renal perfusion pressure.


1976 ◽  
Vol 51 (s3) ◽  
pp. 85s-87s
Author(s):  
A. Stella ◽  
F. Calaresu ◽  
A. Zanchetti

1. Renin release from an intact, innervated kidney and from the contralateral denervated kidney was measured before and during a period of suprarenal aortic stenosis. 2. Aortic stenosis of 10 min duration reduced renal perfusion pressure to 50 mmHg and increased renin release from both kidneys, but the response from the innervated kidney was greater. 3. A study of the time-course of the response during 30 min of aortic stenosis showed that the difference in rate of renin release between the innervated and the denervated kidney is greatest during the first few minutes of aortic stenosis.


1991 ◽  
Vol 260 (2) ◽  
pp. F170-F176 ◽  
Author(s):  
H. B. Lin ◽  
D. B. Young ◽  
M. J. Smith

This study was designed to analyze the acute effects of hyperkalemia on renin release in the normal filtering kidney and the nonfiltering kidney. Plasma K was increased by acute intravenous KCl infusion. In the normal filtering kidney experiment plasma K was 5.7 vs. 3.5 meq/l. Hyperkalemia resulted in a 45% increase in renal blood flow (RBF) and a 35% increase in glomerular filtration rate (GFR) at the 120-mmHg pressure level. Renin release was significantly greater in the hyperkalemic group than in the control group (P less than 0.01) with the greatest effect over the lower pressure range. In the nonfiltering kidney experiment plasma K was 6.09 vs. 3.5 meq/l. RBF was 33% greater in the hyperkalemic than in the normokalemic group at the 130-mmHg pressure level. Renin release was also greater in the hyperkalemic group than in the normokalemic group (P less than 0.01). However, unlike the normal filtering kidney experiments, in the nonfiltering kidneys the difference in renin release was most prominent at the highest level of renal perfusion pressure. These experiments demonstrate that acute hyperkalemia can cause renal vasodilation and stimulate renin release in both filtering and nonfiltering kidney preparations and that potassium may affect renin release both through a direct effect on the juxtaglomerular cells and indirectly by affecting delivery of fluid and/or NaCl to the macula densa.


1981 ◽  
Vol 241 (2) ◽  
pp. F156-F161 ◽  
Author(s):  
H. Holdaas ◽  
G. F. DiBona ◽  
F. Kiil

The mechanism whereby renal nerves influence the renin-release response to aortic constriction was examined in a nonfiltering ureter-occluded kidney preparation in anesthetized dogs. The kidney was rendered nonfiltering by a combination of mannitol infusion and ureteral occlusion. Suprarenal aortic constriction reduced renal perfusion pressure to 61 +/- 7 mmHg and increased renin release from 16.7 +/- 4.1 to 26.1 +/- 6.0 U/min. At normal renal perfusion pressure, low-frequency renal nerve stimulation (0.25 Hz) increased renin release by 11.6 +/- 4.2 to 25.1 +/- 7.6 U/min. The effect of combined low-level renal nerve stimulation and aortic constriction on renin release was additive; renin release increased by 24.6 +/- 6.5 to 39.5 +/- 7.3 U/min. Propranolol or metoprolol, administered intrarenally at 2 microgram . min-1 . kg-1, abolished the renin-release response to low-level renal nerve stimulation at normal renal perfusion pressure. These data provide evidence that low-frequency renal nerve stimulation influences the renin-release response to reduction in renal perfusion pressure in a nonfiltering ureter-occluded kidney with an inoperative macula densa receptor mechanism. The neural effect on renin release at normal renal perfusion pressure is mediated via beta 1-adrenoceptors probably located on the juxtaglomerular granular cells.


1997 ◽  
Vol 273 (5) ◽  
pp. R1676-R1682 ◽  
Author(s):  
María Isabel Madrid ◽  
Miguel García-Salom ◽  
Jerónimo Tornel ◽  
Marc De Gasparo ◽  
Francisco J. Fenoy

The present study examined the effect of an angiotensin II AT1 or AT2 receptor antagonist on the impairment of the pressure diuresis and natriuresis response produced by nitric oxide (NO) synthesis blockade. N ω-nitro-l-arginine methyl ester (l-NAME, 37 nmol ⋅ kg−1 ⋅ min−1) lowered renal blood flow and reduced the slopes of the pressure diuresis and natriuresis responses by 44 and 40%, respectively. Blockade of AT1 receptors with valsartan increased slightly sodium and water excretion at low renal perfusion pressure (RPP). Blockade of AT2 receptors with PD-123319 had no effect on renal function. The administration of valsartan or PD-123319 to rats given l-NAME had no effect on the renal vasocontriction induced by NO synthesis blockade. In addition, in rats givenl-NAME, valsartan elevated baseline excretory values at all RPP studied, but it had no effect on the sensitivity of the pressure diuresis and natriuresis response. However, the administration of PD-123319 tol-NAME-pretreated rats shifted the slopes of the pressure diuresis and natriuresis responses toward control values, indicating that the impairment produced by NO synthesis blockade on pressure diuresis is dependent on the activation of AT2 angiotensin receptors.


1992 ◽  
Vol 262 (1) ◽  
pp. E100-E104
Author(s):  
M. D. Johnson ◽  
R. K. Cavender

The present experiments were designed to determine whether blockade of endogenous opiate receptors with naloxone would suppress renin release induced by circulating epinephrine or by reductions of renal perfusion pressure. In the first series of experiments, anesthetized dogs were prepared with a flow probe around the left renal artery and a catheter in the left renal vein, permitting measurement of renin secretion before, during, and after 15-min infusions of epinephrine (50 ng.kg-1.min-1 iv). The epinephrine infusions were conducted either before or after blockade of opiate receptors with naloxone (1 mg/kg iv). Naloxone failed to alter the renin secretory response to intravenous epinephrine infusion. In a second series of experiments, anesthetized dogs were uninephrectomized and prepared with a constrictor cuff around the left renal artery and a renal arterial catheter distal to the cuff. After control measurements of renal perfusion pressure and plasma renin activity (PRA), the cuff was constricted at 15-min intervals to produce controlled stepwise reductions of renal perfusion pressure ranging from 15 to 90 mmHg. One-half of the animals was pretreated with naloxone (1 mg/kg iv). Naloxone pretreatment had no effect on the PRA response to reduced renal perfusion pressure at any pressure. The data fail to support the hypothesis that endogenous opioid peptides are modulators in the control of renin release.


1985 ◽  
Vol 248 (3) ◽  
pp. E317-E326 ◽  
Author(s):  
M. L. Blair ◽  
Y. H. Chen ◽  
J. L. Izzo

Experiments were performed in pentobarbital-anesthetized dogs to 1) determine if neural stimulation of renin release can be mediated by renal alpha-adrenoceptors at renal nerve stimulation (RNS) frequencies that have little or no effect on total renal blood flow (less than or equal to 1.2 Hz) and 2) ascertain whether alpha-adrenergic control of renin release is affected by renal perfusion pressure (RPP). The renal nerves were electrically stimulated both in the absence of RPP control and with RPP controlled near 85 mmHg. Decreased RPP lowered the threshold for neurogenic stimulation of renin release from less than or equal to 1.2 to 0.3 Hz. beta-Adrenoceptor blockade with propranolol blunted the renin secretion rate (RSR) response to graded RNS (0.3-5.0 Hz), but the extent of inhibition during low-frequency RNS was dependent on RPP. Propranolol prevented increased RSR at 0.6-1.2 Hz RNS when RPP was 111-120 mmHg but not when RPP was 85 mmHg. Combined alpha- and beta-blockade with prazosin and propranolol totally prevented increased RSR during 0.6-1.2 Hz RNS at reduced RPP. In summary, both alpha- and beta-adrenoceptors mediate neural stimulation of renin release at RNS frequencies that do not decrease total renal blood flow when RPP is 85 mmHg.


Sign in / Sign up

Export Citation Format

Share Document