scholarly journals Contingency in ecosystem but not plant community response to multiple global change factors

2012 ◽  
Vol 196 (2) ◽  
pp. 462-471 ◽  
Author(s):  
Mark A. Bradford ◽  
Stephen A. Wood ◽  
Fernando T. Maestre ◽  
James F. Reynolds ◽  
Robert J. Warren
Ecosphere ◽  
2016 ◽  
Vol 7 (12) ◽  
Author(s):  
Sarah Kimball ◽  
Jennifer L. Funk ◽  
Marko J. Spasojevic ◽  
Katharine N. Suding ◽  
Scot Parker ◽  
...  

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sarai S. Finks ◽  
Claudia Weihe ◽  
Sarah Kimball ◽  
Steven D. Allison ◽  
Adam C. Martiny ◽  
...  

Global changes such as increased drought and atmospheric nitrogen deposition perturb both the microbial and plant communities that mediate terrestrial ecosystem functioning. However, few studies consider how microbial responses to global changes may be influenced by interactions with plant communities. To begin to address the role of microbial–plant interactions, we tested the hypothesis that the response of microbial communities to global change depends on the plant community. We characterized bacterial and fungal communities from 395 plant litter samples taken from the Loma Ridge Global Change Experiment, a decade-long global change experiment in Southern California that manipulates rainfall and nitrogen levels across two adjacent ecosystems, a grassland and a coastal sage scrubland. The differences in bacterial and fungal composition between ecosystems paralleled distinctions in plant community composition. In addition to the direct main effects, the global change treatments altered microbial composition in an ecosystem-dependent manner, in support of our hypothesis. The interaction between the drought treatment and ecosystem explained nearly 5% of the variation in bacterial community composition, similar to the variation explained by the ecosystem-independent effects of drought. Unexpectedly, we found that the main effect of drought was approximately four times as strong on bacterial composition as that of nitrogen addition, which did not alter fungal or plant composition. Overall, the findings underscore the importance of considering plant–microbe interactions when considering the transferability of the results of global change experiments across ecosystems.


2021 ◽  
Author(s):  
J.A. Ramirez ◽  
D. Craven ◽  
J.M. Posada ◽  
B. Reu ◽  
C.A. Sierra ◽  
...  

SummaryBackground and AimsCarbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Considering active storage of reserves, there is a trade-off between carbon allocation to growth and to reserves and defense. A resulting hypothesis is that allocation to reserves exhibits a coordinated variation with functional traits associated with the ‘fast-slow’ plant economics spectrum.MethodsWe tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models.Key ResultsOur results provide evidence that NSC concentrations in woody organs and plant functional traits are largely decoupled, meaning that species’ resilience is unrelated to their position on the ‘fast-slow’ plant economics spectrum. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow continuum was coordinated, as species with higher leaf NSC had traits values associated with resource conservative species such as lower SLA, lower Amax, and high wood density. We did not detect an influence of leaf habit on the variation of NSC concentrations in tree organs.ConclusionsEfforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the ‘fast-slow’ spectrum and that capture how species respond to a broad range of global change factors.


2021 ◽  
pp. 108538
Author(s):  
Juan Zhou ◽  
Jianping Wu ◽  
Jingxing Huang ◽  
Xiongjie Sheng ◽  
Xiaolin Dou ◽  
...  

2019 ◽  
Vol 12 (5) ◽  
pp. 894-906
Author(s):  
Jordi Bou ◽  
Lluís Vilar

AbstractAimsOur aims were 3-fold: (i) to determine whether global change has altered the composition and structure of the plant community found in the sessile oak forests on the NE Iberian Peninsula over the last decades, (ii) to establish whether the decline in forest exploitation activities that has taken place since the mid-20th century has had any effect on the forests and (iii) to ascertain whether there is any evidence of impact from climate warming.MethodsWe assess changes in the plant community by comparing a current survey of sessile oak forest with a historical data set obtained from previous regional studies dating from 1962 to 1977. We analyse the regional changes in the community in terms of biodiversity variables, species composition and plant traits. Furthermore, plants traits such as plant life forms and chorological groups are used to discern any effects from land-use changes and climate warming on the plant community.Important FindingsThere has been a loss of diversity in the community and, in the hottest region, there is also a loss of species richness. The composition of the community suggests that, although significant changes have taken place over recent decades, these changes differ between regions as a result of the low impact global change has had in the western regions. For instance, while the tree canopy cover in the western sessile oak forests remains stable, the eastern sessile oak forests are still recovering from the former exploitation that led to a loss of their rich and abundant herbaceous stratum. In fact, the recovery process in the Catalan Pre-Coastal Range has constituted an increase in the Euro-Siberian plants typical to this community. Moreover, in the eastern forests, there is evidence that climate warming has impacted the thermophilization of the sessile oak forests found on the Coastal Range.


2012 ◽  
Vol 9 (4) ◽  
pp. 1351-1366 ◽  
Author(s):  
X. F. Xu ◽  
H. Q. Tian ◽  
G. S. Chen ◽  
M. L. Liu ◽  
W. Ren ◽  
...  

Abstract. Nitrous oxide (N2O) is a potent greenhouse gas which also contributes to the depletion of stratospheric ozone (O3). However, the magnitude and underlying mechanisms for the spatiotemporal variations in the terrestrial sources of N2O are still far from certain. Using a process-based ecosystem model (DLEM – the Dynamic Land Ecosystem Model) driven by multiple global change factors, including climate variability, nitrogen (N) deposition, rising atmospheric carbon dioxide (CO2), tropospheric O3 pollution, N fertilizer application, and land conversion, this study examined the spatial and temporal variations in terrestrial N2O flux over North America and further attributed these variations to various driving factors. From 1979 to 2010, the North America cumulatively emitted 53.9 ± 0.9 Tg N2O-N (1 Tg = 1012 g), of which global change factors contributed 2.4 ± 0.9 Tg N2O-N, and baseline emission contributed 51.5 ± 0.6 Tg N2O-N. Climate variability, N deposition, O3 pollution, N fertilizer application, and land conversion increased N2O emission while the elevated atmospheric CO2 posed opposite effect at continental level; the interactive effect among multiple factors enhanced N2O emission over the past 32 yr. N input, including N fertilizer application in cropland and N deposition, and multi-factor interaction dominated the increases in N2O emission at continental level. At country level, N fertilizer application and multi-factor interaction made large contribution to N2O emission increase in the United States of America (USA). The climate variability dominated the increase in N2O emission from Canada. N inputs and multiple factors interaction made large contribution to the increases in N2O emission from Mexico. Central and southeastern parts of the North America – including central Canada, central USA, southeastern USA, and all of Mexico – experienced increases in N2O emission from 1979 to 2010. The fact that climate variability and multi-factor interaction largely controlled the inter-annual variations in terrestrial N2O emission at both continental and country levels indicate that projected changes in the global climate system may substantially alter the regime of N2O emission from terrestrial ecosystems during the 21st century. Our study also showed that the interactive effect among global change factors may significantly affect N2O flux, and more field experiments involving multiple factors are urgently needed.


2020 ◽  
Vol 26 (9) ◽  
pp. 5320-5332 ◽  
Author(s):  
Tongshuo Bai ◽  
Peng Wang ◽  
Steven J. Hall ◽  
Fuwei Wang ◽  
Chenglong Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document