A synthesis of soil nematode responses to global change factors

2021 ◽  
pp. 108538
Author(s):  
Juan Zhou ◽  
Jianping Wu ◽  
Jingxing Huang ◽  
Xiongjie Sheng ◽  
Xiaolin Dou ◽  
...  
2021 ◽  
Author(s):  
J.A. Ramirez ◽  
D. Craven ◽  
J.M. Posada ◽  
B. Reu ◽  
C.A. Sierra ◽  
...  

SummaryBackground and AimsCarbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Considering active storage of reserves, there is a trade-off between carbon allocation to growth and to reserves and defense. A resulting hypothesis is that allocation to reserves exhibits a coordinated variation with functional traits associated with the ‘fast-slow’ plant economics spectrum.MethodsWe tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models.Key ResultsOur results provide evidence that NSC concentrations in woody organs and plant functional traits are largely decoupled, meaning that species’ resilience is unrelated to their position on the ‘fast-slow’ plant economics spectrum. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow continuum was coordinated, as species with higher leaf NSC had traits values associated with resource conservative species such as lower SLA, lower Amax, and high wood density. We did not detect an influence of leaf habit on the variation of NSC concentrations in tree organs.ConclusionsEfforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the ‘fast-slow’ spectrum and that capture how species respond to a broad range of global change factors.


2012 ◽  
Vol 9 (4) ◽  
pp. 1351-1366 ◽  
Author(s):  
X. F. Xu ◽  
H. Q. Tian ◽  
G. S. Chen ◽  
M. L. Liu ◽  
W. Ren ◽  
...  

Abstract. Nitrous oxide (N2O) is a potent greenhouse gas which also contributes to the depletion of stratospheric ozone (O3). However, the magnitude and underlying mechanisms for the spatiotemporal variations in the terrestrial sources of N2O are still far from certain. Using a process-based ecosystem model (DLEM – the Dynamic Land Ecosystem Model) driven by multiple global change factors, including climate variability, nitrogen (N) deposition, rising atmospheric carbon dioxide (CO2), tropospheric O3 pollution, N fertilizer application, and land conversion, this study examined the spatial and temporal variations in terrestrial N2O flux over North America and further attributed these variations to various driving factors. From 1979 to 2010, the North America cumulatively emitted 53.9 ± 0.9 Tg N2O-N (1 Tg = 1012 g), of which global change factors contributed 2.4 ± 0.9 Tg N2O-N, and baseline emission contributed 51.5 ± 0.6 Tg N2O-N. Climate variability, N deposition, O3 pollution, N fertilizer application, and land conversion increased N2O emission while the elevated atmospheric CO2 posed opposite effect at continental level; the interactive effect among multiple factors enhanced N2O emission over the past 32 yr. N input, including N fertilizer application in cropland and N deposition, and multi-factor interaction dominated the increases in N2O emission at continental level. At country level, N fertilizer application and multi-factor interaction made large contribution to N2O emission increase in the United States of America (USA). The climate variability dominated the increase in N2O emission from Canada. N inputs and multiple factors interaction made large contribution to the increases in N2O emission from Mexico. Central and southeastern parts of the North America – including central Canada, central USA, southeastern USA, and all of Mexico – experienced increases in N2O emission from 1979 to 2010. The fact that climate variability and multi-factor interaction largely controlled the inter-annual variations in terrestrial N2O emission at both continental and country levels indicate that projected changes in the global climate system may substantially alter the regime of N2O emission from terrestrial ecosystems during the 21st century. Our study also showed that the interactive effect among global change factors may significantly affect N2O flux, and more field experiments involving multiple factors are urgently needed.


2020 ◽  
Vol 26 (9) ◽  
pp. 5320-5332 ◽  
Author(s):  
Tongshuo Bai ◽  
Peng Wang ◽  
Steven J. Hall ◽  
Fuwei Wang ◽  
Chenglong Ye ◽  
...  

2020 ◽  
Author(s):  
Hans De Boeck ◽  
Simon Reynaert ◽  
Ivan Nijs ◽  
Karel Klem ◽  
Klaus Steenberg Larsen ◽  
...  

<p>Human activities are directly and indirectly generating major environmental pressures on ecosystems worldwide through climate change, pollution and other global changes. Altogether, these changes result in a rapid erosion of biodiversity and a perturbation of ecological and agricultural systems and services, prompting urgent societal questions on how to retain or promote sustainable ecosystem services in a global change context. Understanding the responses of ecosystems to such pressures and perturbations, and developing adaptation strategies critically requires state-of-the-art experimental facilities that are able to simulate multiple global change factors. AnaEE (Analysis and Experimentation on Ecosystems) brings together such facilities in a European-wide infrastructure for experimental research on managed and unmanaged terrestrial and aquatic ecosystems. It assists and integrates four types of national platforms (Open-air, Enclosed, Analytical, and Modelling) and provides support to scientists who wish to engage in research projects using these platforms or the data they generate. These services are organised through the Central Hub and three Service Centres (Technology, Data and Modelling, Interface and Synthesis). This integrated approach improves the quality and availability of data and projections on ecosystem responses to global changes, enabling policy makers and stakeholders to make fact-based  decisions on how to sustainably manage ecosystem services. As an example, we shortly discuss the new open air FATI-platform (UAntwerp) in which ecosystems can be exposed to various combinations of precipitation change and warming, and present first results of a study on the impacts of precipitation regime changes on temperate grassland.</p>


2020 ◽  
Author(s):  
Yi Wang ◽  
Shirong Liu ◽  
Junwei Luan

<p>The roles of multiple global change are expected for many terrestrial ecosystems in future. As two main global change factors, the impact of drought and nitrogen deposition and their interaction on soil respiration and its components (R) remains unclear. To explore the responses of soil respiration (R<sub>s</sub>), autotrophic respiration (R<sub>a</sub>) and heterotrophic respiration (R<sub>h</sub>) to multiple global change factors, we established a field experiment of throughfall reduction and nitrogen additions in a subtropical Moso bamboo (<em>Phyllostachys heterocycla</em>) forest in the Southwest China, using a 4 × 4 completely randomized design. Results showed that bivariate exponential equation with soil temperature (T) and soil moisture (SWC) (R=a.e<sup>bT</sup>.SWC<sup>c</sup>) was fitted to predict R<sub>s</sub>, R<sub>a</sub> and R<sub>h</sub>. Throughfall reduction, nitrogen additions and their interaction had no effect on annual mean R<sub>s</sub> and R<sub>a</sub>, but nitrogen additions significantly depressed annual mean R<sub>h</sub>. Nitrogen additions significantly decreased contribution of R<sub>h</sub> to R<sub>s</sub> and increased contribution of R<sub>a</sub> to R<sub>s</sub>, however, the contributions were non-responsive under throughfall reduction. The more positive effect of nitrogen additions on the contribution of R<sub>a</sub> to R<sub>s</sub> was appeared compared with that of throughfall reduction, thereby more negative effect on the contribution of R<sub>h</sub> to R<sub>s</sub>. The fine root biomass, fine root carbon and nitrogen storage regulated R<sub>s</sub>, while fine root phosphorus storage determined R<sub>a</sub>. The R<sub>h</sub> was negatively correlated with vector lengths, thus suggesting that microbial carbon limitation caused the decline of R<sub>h</sub>. Our findings demonstrate that the nitrogen additions played overriding role than throughfall reduction in affecting the contribution of R<sub>a</sub> and R<sub>h</sub> to R<sub>s</sub>. Moreover, the negative response of temperature sensitivity of R<sub>s</sub> and R<sub>h</sub> to nitrogen additions, suggesting that that the nitrogen additions may weaken the positive response of soil CO<sub>2</sub> emission to global climate warming. Our study highlights asymmetrical responses of R<sub>s</sub>, R<sub>a</sub> and R<sub>h </sub>to throughfall reduction and nitrogen additions and could enhance accurate predictions of soil carbon dynamics in response to multiple global climate change in future.</p>


2016 ◽  
Vol 22 (9) ◽  
pp. 3157-3169 ◽  
Author(s):  
Lingyan Zhou ◽  
Xuhui Zhou ◽  
Junjiong Shao ◽  
Yuanyuan Nie ◽  
Yanghui He ◽  
...  

2011 ◽  
Vol 25 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hanqin Tian ◽  
Jerry Melillo ◽  
Chaoqun Lu ◽  
David Kicklighter ◽  
Mingliang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document