EFFECT OF TWO BLOOD PLASMA PROTEIN FRACTIONS ON THE ADENOSINE TRIPHOSPHATASE SYSTEM OF BRAIN CORTEX SLICES IN VITRO

1966 ◽  
Vol 13 (5) ◽  
pp. 353-359 ◽  
Author(s):  
J.-L. DAVRAINVILLE ◽  
J. GAYET
1963 ◽  
Vol 41 (2) ◽  
pp. 435-454 ◽  
Author(s):  
O. Gonda ◽  
J. H. Quastel

The effects of acetylsalicylate and of 2,4-dinitrophenol on the metabolism and transport processes of rat brain cortex slices incubated at 37° in glucose–Ringer media under various conditions have been investigated. The following processes are suppressed by acetylsalicylate (5 mM) or dinitrophenol (0.05 mM) to a much greater extent in media containing 105 mM KCl or 10 mM NH4Cl (which stimulate brain respiration) than in normal media:(a) respiration;(b) incorporation of phosphate into ATP and ADP;(c) conversion of creatine to phosphocreatine;(d) uptake of glutamate or of creatine from the medium to the tissue.The two drugs increase the leakage of amino acids from rat brain cortex slices into the medium, the effects being greatest in the presence of 105 mM KCl or 5 mM glutamate or in the absence of glucose. They change the yields of labelled amino acids from labelled glucose or labelled glutamate.Labelled glutamate is converted to labelled aspartate, γ-aminobutyrate and glutamine in rat brain cortex slices, the addition of glucose bringing about increased yields of glutamine and γ-aminobutyrate and a decreased yield of aspartate. The formation of labelled glutamine from either labelled glutamate or from labelled glucose is suppressed by acetylsalicylate or dinitrophenol, the effects being greater in the presence of 105 mM KCl or 10 mM NH4Cl.The increased sensitivity of the stimulated tissue metabolism to the drugs, in the presence of high K+, or of NH4+or of glutamate, is probably explained by the fact that there is a fall, under these conditions, in the tissue phosphocreatine level. There is, therefore, less reserve phosphocreatine to maintain the level of ATP when neuronal oxidative phosphorylation is suppressed by the addition of acetylsalicylate or of dinitrophenol.


1963 ◽  
Vol 41 (1) ◽  
pp. 597-604 ◽  
Author(s):  
Shail K. Sharma ◽  
R. M. Johnstone ◽  
J. H. Quastel

Uptake of ascorbic acid-1-C14in brain cortex and adrenal cortex slices is an energy-dependent process. Concentration ratios (i.e. ratios of tissue ascorbic acid-1-C14to medium ascorbic acid-1-C14) greater than 4 have been obtained with both tissues in vitro. Ouabain as well as 2, 4-dinitrophenol suppresses ascorbic acid uptake into brain cortex slices.ACTH inhibits the uptake of ascorbic acid-1-C14in adrenal cortex, but not in brain cortex slices. The presence of glucose is necessary for the inhibition. Several cortical steroids, as well as adenosine-3′,5′-monophosphate, at small concentrations inhibit the uptake. The results are consistent with the interpretation that ACTH inhibits the uptake of ascorbic acid in the adrenal cortex through the steroids produced in its presence.


1963 ◽  
Vol 41 (3) ◽  
pp. 597-604 ◽  
Author(s):  
Shail K. Sharma ◽  
R. M. Johnstone ◽  
J. H. Quastel

Uptake of ascorbic acid-1-C14in brain cortex and adrenal cortex slices is an energy-dependent process. Concentration ratios (i.e. ratios of tissue ascorbic acid-1-C14to medium ascorbic acid-1-C14) greater than 4 have been obtained with both tissues in vitro. Ouabain as well as 2, 4-dinitrophenol suppresses ascorbic acid uptake into brain cortex slices.ACTH inhibits the uptake of ascorbic acid-1-C14in adrenal cortex, but not in brain cortex slices. The presence of glucose is necessary for the inhibition. Several cortical steroids, as well as adenosine-3′,5′-monophosphate, at small concentrations inhibit the uptake. The results are consistent with the interpretation that ACTH inhibits the uptake of ascorbic acid in the adrenal cortex through the steroids produced in its presence.


1972 ◽  
Vol 50 (6) ◽  
pp. 654-662 ◽  
Author(s):  
Alexander Jakubovič ◽  
Patrick L. McGeer

The effect of Δ9-tetrahydrocannabinol (THC), cannabidiol, and cannabigerol on some metabolic processes in infant and adult rat brain cortex slices was studied in vitro. With L-leucine-U-14C as the tracer substrate, the incorporation of radioactivity into the protein and nucleic acid fractions was significantly inhibited by THC. The oxygen consumption of the slices, the uptake of L-leucine into the slices, and the evolution of 14CO2 were, however, unaffected by THC. Cannabidiol was comparable in activity to THC but cannabigerol was less active. The pattern of inhibition by THC was also observed when the rat brain cortex slices were stimulated by 100 mM K+ or 10 μM protoveratrine. THC also brought about a significant decrease in the incorporation of uridine-2-14C into the nucleic acid fraction of infant and adult rat brain cortex slices. There was a decreased formation of uridine nucleotides in the presence of THC and an increase in uridine and uracil in the low molecular weight fraction. Experiments with THC-2,4-14C established that there was rapid uptake and a concentration of radioactivity in the incubated brain tissue.


Author(s):  
S. S. Grabovskyi ◽  
O. S. Grabovska

<p>The results of determination of protein fractions, cortisol content in blood of rabbits, which further added to the feed of natural origin biologically active substances are presented in the article. As an antistressors and immunomodulators in pre-slaughter period are using of spleen extract biologically active substances were obtained with ultrasound application. The purpose of research — determination of changes of protein fractions, cortisol content in rabbits blood before slaughter and their correction of natural origin biologically active substances (spleen extract).</p> <p>Object and research methods. The experiment was conducted on 15 rabbits with standard diet. Three groups of rabbits five month of age (5 rabbits each) was formed for research. The spleen extract were using as an biologically active substances to the feed rabbits in pre-slaughter period (five days before slaughter). The extracts were applied to feed by aerosol method (70 °alcohol solution of spleen extract volume of 1.4 ml per rabbit) (group I). The rabbits (group II) received to the feed in the same way of 70 °alcohol solution in the same volume. The control group rabbits received the standard feed in the same volume. The feed eating by rabbits was exercised daily. The rabbits ate food completely. The rabbits slaughter was carried out in the morning. The blood plasma protein fractions separation was carried out by horizontal electrophoresis in polyacrylamide gel (PAAG).</p> <p class="Default">Mathematical treatment of the research results worked statistically using the software package Statistica 6.0 and Microsoft Excel for Windows XP. Probability differences was assessed by Student t-test and results considered likely at P ≤ 0.05.</p> <p>Results and discussion. We measured the ratio of blood plasma protein fractions of rabbits, which in addition to the feed fed of natural origin biologically active substances. As a result of research was found that aerosol introduction of the spleen extract to the rabbits feed increases the Prealbumin concentration in rabbits blood plasma of two experimental groups twice (P ≤ 0.05) and 2.8 times (P ≤ 0.01) compared to the control.</p> <p>Cortisol level in rabbits (which further added to the feed of spleen extract (I research group) blood plasma was reliable lower by 40 % (Р&lt;0.05) compared to control, that may to indicate decreasing of stress before slaughter. On the rabbits feeding final stage is necessary to consider a pre-slaughter stress and to apply of natural origin biologically active substances. The results which obtained can to use in researches of stress hormones, such as cortisol, on farm animals for organism resistance increasing, correction and avoid their pre-slaughter stress and improve product quality.</p>


Cephalalgia ◽  
1999 ◽  
Vol 19 (10) ◽  
pp. 859-865 ◽  
Author(s):  
A Stȩpień ◽  
M Chalimoniuk ◽  
J Strosznajder

Our previous studies indicating that the function of excitatory amino acids, NMDA type receptor, is modulated by serotonin focused on the interaction between serotonin 5HT1B/1D and glutamate, NMDA receptor in brain cortex. The effect of agonists of 5HT1B/1D receptor, sumatriptan, and zolmitriptan on NMDA receptor-evoked activation of nitric oxide (NO) and cGMP synthesis in adult rat brain cortex slices was investigated. Two kinds of experiment were carried out using adult rats. In one of them, sumatriptan or zolmitriptan was administered in vivo subcutaneously (s.c.) in a dose of 0.1 mg per kg body weight. Brain slices were then prepared and used in the experiments or, in the other exclusively in vitro studies, both agonists at 10 μM concentration were added directly to the incubation medium containing adult rat brain cortex slices. The data obtained from these studies indicated that stimulation of NMDA receptor in brain cortex slices. The data obtained from these studies indicated that stimulation of NMDA receptor in brain cortex slices leads to a large increase in calcium, calmodulin-dependent NO synthase (NOS) activity and to significant enhancement of the cGMP level. This NMDA receptor-dependent NO and cGMP release was completely blocked by competitive and noncompetitive NMDA receptor antagonists APV (10 μM) or MK-801 (10 μM.), respectively. The specific inhibitor of Ca2+-dependent isoforms of NOS (N-nitro-1-arginine NNLA and 7-nitroindozole (7-N1)) eliminated the NMDA receptor-mediated enhancement of NO and cGMP release. Moreover, the serotonin 5HT1B/1D receptor agonists sumatriptan and zolmitriptan administrated in vivo (s.c.) or in vitro abolished NMDA receptor-evoked NO signalling in brain cortex. The potency of both agonists investigated directly in vitro was similar to their effect after in vivo administration. These results suggest that both serotonin 5HT1B/1D receptor agonists may play an important role in modulating the NO and cGMP-dependent signal transduction pathway in the brain. This effect of sumatriptan and zolmitriptan on NO signaling in the brain system should be taken into consideration when investigating their mechanism of action in the migraine attack.


Sign in / Sign up

Export Citation Format

Share Document