?-Hydroxylation of Fatty Acids in Brain: Characterization of Heat-Labile Factor

1981 ◽  
Vol 37 (2) ◽  
pp. 388-391 ◽  
Author(s):  
Inderjit Singh ◽  
Yasuo Kishimoto
Keyword(s):  
2011 ◽  
Vol 100 (9) ◽  
pp. 2293-2301 ◽  
Author(s):  
Matthias J.N. Junk ◽  
Hans W. Spiess ◽  
Dariush Hinderberger

1994 ◽  
Vol 40 (10) ◽  
pp. 844-850 ◽  
Author(s):  
Peter Kämpfer ◽  
Klaus Blasczyk ◽  
Georg Auling

A chemotaxonomic study was carried out on representative strains of 13 Aeromonas genomic species. Quinone, polyamine, and fatty acid patterns were found to be very useful for an improved characterization of the genus and an improved differentiation from members of the families Enterobacteriaceae and Vibrionaceae. The Q-8-benzoquinone was the predominant ubiquinone, and putrescine and diaminopropane were the major poly amines of the genus. The fatty acid patterns of 181 strains, all characterized by DNA–DNA hybridization, showed a great homogeneity within the genus, with major amounts of hexadecanoic acid (16:0), hexadecenoic acid (16:1), and octadecenoic acid (18:1), and minor amounts of the hydroxylated fatty acids (3-OH 13:0, 2-OH 14:0, 3-OH 14:0) in addition to some iso and anteiso branched fatty acids (i-13:0, i-17:1, i-17:0, and a-17:0). Although some differences in fatty acid profiles between the genomic species could be observed, a clearcut differentiation of all species was not possible.Key words: Aeromonas, polyamines, quinones, fatty acids, differentiation.


2006 ◽  
Vol 282 (7) ◽  
pp. 4613-4625 ◽  
Author(s):  
Markus Fritz ◽  
Heiko Lokstein ◽  
Dieter Hackenberg ◽  
Ruth Welti ◽  
Mary Roth ◽  
...  

Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2–3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Δ3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.


ChemInform ◽  
1987 ◽  
Vol 18 (11) ◽  
Author(s):  
S. AHMAD ◽  
M. KHAN ◽  
F. AHMAD ◽  
NASIRULLA NASIRULLA ◽  
S. M. OSMAN

2021 ◽  
Author(s):  
Jerry Chien-Yao Chao

Fatty acid (FA) composition between biofilms and batch planktonic cultures were compared for two bacterial species Pseudomonas aeruginosa and Staphylococcus aureaus. Biofilm cultures exhibited decrease in saturated fatty acids (SAFA) that potentially conform to a more fluidic biophysical membrane property. The amount of FA in the biofilms' extracellular polymeric substance was not sufficient to consider it having a major contribution to the observed differences between biofilms and batch planktonic cultures. While biofilm grazing by the amphipod Hyalella azteca was evident, only certain bacteria-specific FA appeared to have the potential to be retained (odd-number SAFA and branched-chain FA). H. azteca with diet strictly consisted of bacteria biofilms did not demonstrate significant changes in their nutritional condition in terms of ω-3 and ω-6 polyunsaturated fatty acids (PUFA): combined with the results from fasting trials, H. azteca appears to have the capacity to retain ω-3 and ω-6 PUFAs up to 10 days.


1990 ◽  
Vol 58 (12) ◽  
pp. 4045-4048 ◽  
Author(s):  
M Endoh ◽  
M Nagai ◽  
D L Burns ◽  
C R Manclark ◽  
Y Nakase

1999 ◽  
Vol 46 (4) ◽  
pp. 1001-1009
Author(s):  
S F Izmailov ◽  
G Y Zhiznevskaya ◽  
L V Kosenko ◽  
G N Troitskaya ◽  
N N Kudryavtseva ◽  
...  

Chemical composition of lipopolysaccharide (LPS) isolated from an effective (97) and ineffective (87) strains of R. l. viciae has been determined. LPS preparations from the two strains contained: glucose, galactose, mannose, fucose, arabinose, heptose, glucosamine, galactosamine, quinovosamine, and 3-N-methyl-3,6-dideoxyhexose, as well as glucuronic, galacturonic and 3-deoxyoctulosonic acid. The following fatty acids were identified: 3-OH 14:0, 3-OH 15:0, 3-OH 16:0, 3-OH 18:0 and 27-OH 28:0. The ratio of 3-OH 14:0 to other major fatty acids in LPS 87 was higher that in LPS 97. SDS/PAGE profiles of LPS indicated that, in lipopolysaccharides, relative content of S form LPS I to that of lower molecular mass (LPS II) was much higher in the effective strain 97 than in 87. All types of polysaccharides exo-, capsular-, lipo, (EPS, CPS, LPS, respectively) examined possessed the ability to bind faba bean lectin. The degree of affinity of the host lectin to LPS 87 was half that to LPS 97. Fatty acids (FA) composition from bacteroids and peribacteroid membrane (PBM) was determined. Palmitic, stearic and hexadecenoic acids were common components found in both strains. There was a high content of unsaturated fatty acids in bacteroids as well as in PBM lipids. The unsaturation index in the PBM formed by strain 87 was lower than in the case of strain 97. Higher ratio of 16:0 to 18:1 fatty acids was characteristic for PMB of the ineffective strain.


Sign in / Sign up

Export Citation Format

Share Document