Adenosine and Cyclic AMP in Rat Cerebral Cortical Slices: Effects of Adenosine Uptake Inhibitors and Adenosine Deaminase Inhibitors

1981 ◽  
Vol 36 (3) ◽  
pp. 908-912 ◽  
Author(s):  
Y. Nimit ◽  
P. Skolnick ◽  
J. W. Daly
1982 ◽  
Vol 60 (3) ◽  
pp. 302-307 ◽  
Author(s):  
M. J. York ◽  
L. P. Davies

We have used the adenosine-stimulated adenylate cyclase of guinea-pig brain to examine the potency of diazepam as an adenosine uptake inhibitor. Diazepam at concentrations in the range 10–500 μM stimulates the production of cAMP in incubated slices of guinea-pig cerebral cortex, with maximal fivefold stimulations over basal levels by 200 μM diazepam. The increases can be largely (but not completely) blocked by the adenosine antagonist theophylline or by addition of excess adenosine deaminase to the system. It appears that the stimulation of cAMP production is due to a blockade of adenosine uptake which results in an increase in extracellular adenosine and concomitant activation of the adenosine receptor coupled to adenylate cyclase. Since the cAMP response to standard adenosine uptake blockers (dipyridamole, dilazep) can be completely blocked by theophylline or adenosine deaminase, a small component of the diazepam response cannot be explained by an adenosine effect. The concentration of diazepam at which the first significant cAMP increase occurs is 10 μM or slightly lower. This is significantly higher than the concentration of diazepam needed to saturate the pharmacologically characterized central nervous system receptors for benzodiazepines.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4652
Author(s):  
Barbara Kutryb-Zajac ◽  
Paulina Mierzejewska ◽  
Ewa M. Slominska ◽  
Ryszard T. Smolenski

Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2′deoxyadenosine to 2′deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.


Author(s):  
John W. Phillis

SUMMARY:On the basis of the information presented in this review, it is difficult to reach any firm decision regarding the role of cyclic AMP (or cyclic GMP) in synaptic transmission in the brain. While it is clear that cyclic nucleotide levels can be altered by the exposure of neural tissues to various neurotransmitters, it would be premature to claim that these nucleotides are, or are not, essential to the transmission process in the pre- or postsynaptic components of the synapse. In future experiments with cyclic AMP it will be necessary to consider more critically whether the extracellularly applied nucleotide merely provides a source of adenosine and is thus activating an extracellularly located adenosine receptor, or whether it is actually reaching the hypothetical sites at which it might act as a second messenger. The application of cyclic AMP by intracellular injection techniques should minimize this particular problem, although possibly at the expense of new difficulties. Prior blockade of the adenosine receptor with agents such as theophylline or adenine xylofuranoside may also assist in the categorization of responses to extracellularly applied cyclic AMP as being a result either of activation of the adenosine receptor or of some other mechanism. Ultimately, the development of highly specific inhibitors for adenylate cyclase should provide a firm basis from which to draw conclusions about the role of cyclic AMP in synaptic transmission. Similar considerations apply to the actions of cyclic GMP and the role of its synthesizing enzyme, guanylale cyclase.The use of phosphodiesterase inhibitors in studies on cyclic nucleotides must also be approached with caution. The diverse actions of many of these compounds, which include calcium mobilization and block of adenosine uptake, could account for many of the results that have been reported in the literature.


1981 ◽  
Vol 20 (1) ◽  
pp. 67-72 ◽  
Author(s):  
T.L. Smith ◽  
A. Jacobyansky ◽  
Anna Shen ◽  
D. Pathman ◽  
R.G. Thurman

Sign in / Sign up

Export Citation Format

Share Document