2-Deoxyglucose Incorporation into Rat Brain Glycogen During Measurement of Local Cerebral Glucose Utilization by the 2-Deoxyglucose Method

1984 ◽  
Vol 43 (4) ◽  
pp. 949-956 ◽  
Author(s):  
Thomas Nelson ◽  
Elaine E. Kaufman ◽  
Louis Sokoloff
1987 ◽  
Vol 43 ◽  
pp. 98
Author(s):  
Akira Yamashita ◽  
Akemi Hayashi ◽  
Akio Ozaki ◽  
Takayuki Sukamoto ◽  
Keizo Ito

1984 ◽  
Vol 246 (4) ◽  
pp. R608-R618 ◽  
Author(s):  
R. M. Abrams ◽  
M. Ito ◽  
J. E. Frisinger ◽  
C. S. Patlak ◽  
K. D. Pettigrew ◽  
...  

The newborn mammalian brain of several species has been shown to have a lower average rate of energy metabolism and a narrower range of rates in its various components than is found in maturity. In a further study of cerebral energy metabolism during development, we have employed the [14C]deoxyglucose method for measuring local cerebral glucose utilization in fetal and neonatal sheep. After establishing the lumped constant to be 0.40 and finding the rate constants for the kinetic behavior of deoxyglucose in plasma and brain to be close to those in other species, we measured the rates of glucose utilization in 44 regions of the brain. The rates were low and homogeneous in midgestation, except for those of brain stem nuclei of the auditory and vestibular systems and those of the hippocampus which were relatively high. In the last 7 wk, local rates rose approximately threefold. After birth there was a further average increase of 50% above full-term levels. The study shows that cerebral energy metabolism rises in most structures during prenatal maturation, a time when sensory stimulation is at a relatively low level and behavioral responses are minimal.


1987 ◽  
Vol 7 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Giovanni Lucignani ◽  
Hiroki Namba ◽  
Astrid Nehlig ◽  
Linda J. Porrino ◽  
Charles Kennedy ◽  
...  

The effects of hyperinsulinemia on local cerebral glucose utilization were studied by the quantitative autoradiographic 2-[14C]deoxyglucose method in normal conscious rats under steady-state normoglycemic conditions. Hyperinsulinemia and a steady state of normoglycemia were achieved and maintained during the experimental period by a continuous intravenous (i.v.) infusion of insulin given simultaneously with a programmed i.v. infusion of D-glucose. Hyperinsulinemia under normoglycemic conditions did not change the average rate of glucose utilization in the brain as a whole, but significant increases in local glucose utilization were found selectively in the ventromedial, dorsomedial, and anterior hypothalamic nuclei. The results suggest that a known anatomical pathway linking the dorsomedial and anterior nuclei with the ventromedial nucleus of the hypothalamus may be physiologically activated in response to hyperinsulinemia.


1985 ◽  
Vol 5 (1) ◽  
pp. 58-64 ◽  
Author(s):  
W. Kuschinsky ◽  
S. Suda ◽  
L. Sokoloff

The relationship between local cerebral glucose utilization (LCGU) and local CBF (LCBF) was examined during the action of γ-hydroxybutyrate (GHB) (900 mg/kg i.v.) in conscious rats. GHB induced discrepant effects on blood flow and metabolism. LCGU was markedly depressed in all structures examined, whereas LCBF was differently affected in that no related changes were observed. Global glucose utilization was markedly depressed (- 51%), whereas global blood flow was not significantly altered. The marked dissociation between the changes in global glucose utilization and global blood flow induced by GHB is reflected only to a minor degree in the local values inasmuch as the correlation between LCGU and LCBF was only slightly weakened and its heterogeneity was increased.


1992 ◽  
Vol 593 (2) ◽  
pp. 265-273 ◽  
Author(s):  
A.G. Hohmann ◽  
R.R. Matsumoto ◽  
M.K. Hemstreet ◽  
S.L. Patrick ◽  
J.E. Margulies ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document