scholarly journals Use-dependent block of Ca2+ current by moricizine in guinea-pig ventricular myocytes: a possible ionic mechanism of action potential shortening

1993 ◽  
Vol 108 (3) ◽  
pp. 812-818 ◽  
Author(s):  
Tei-ichi Yamane ◽  
Akihiko Sunami ◽  
Tohru Sawanobori ◽  
Masayasu Hiraoka
1996 ◽  
Vol 78 (2) ◽  
pp. 262-273 ◽  
Author(s):  
Stefan Kääb ◽  
H. Bradley Nuss ◽  
Nipavan Chiamvimonvat ◽  
Brian O’Rourke ◽  
Peter H. Pak ◽  
...  

1999 ◽  
Vol 277 (2) ◽  
pp. H826-H833 ◽  
Author(s):  
Seiko Tanabe ◽  
Toshio Hata ◽  
Masayasu Hiraoka

To explore a possible ionic basis for the prolonged Q-T interval in women compared with that in men, we investigated the electrophysiological effects of estrogen in isolated guinea pig ventricular myocytes. Action potentials and membrane currents were recorded using the whole cell configuration of the patch-clamp technique. Application of 17β-estradiol (10–30 μM) significantly prolonged the action potential duration (APD) at 20% (APD20) and 90% repolarization (APD90) at stimulation rates of 0.1–2.0 Hz. In the presence of 30 μM 17β-estradiol, APD20 and APD90 at 0.1 Hz were prolonged by 46.2 ± 17.1 and 63.4 ± 11.7% of the control ( n = 5), respectively. In the presence of 30 μM 17β-estradiol the peak inward Ca2+ current ( I CaL) was decreased to 80.1 ± 2.5% of the control ( n = 4) without a shift in its voltage dependence. Application of 30 μM 17β-estradiol decreased the rapidly activating component of the delayed outward K+ current ( I Kr) to 63.4 ± 8% and the slowly activating component ( I Ks) to 65.8 ± 8.7% with respect to the control; the inward rectifier K+ current was barely affected. The results suggest that 17β-estradiol prolonged APD mainly by inhibiting the I Kcomponents I Krand I Ks.


1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


1996 ◽  
Vol 271 (4) ◽  
pp. C1233-C1243 ◽  
Author(s):  
Y. Song ◽  
L. Belardinelli

The goal of this study was to determine the electrophysiological and functional effects of adenosine on ventricular myocytes of guinea pig, rabbit, rat, and ferret hearts. Adenosine (100 microM) shortened the action potential durations of rat and ferret myocytes by 14 +/- 1 and 57 +/- 7%, reduced the amplitudes of cell twitch shortening by 13 +/- 1 and 54 +/- 5%, and increased outward currents by 15 +/- 4 and 55 +/- 5%, respectively, but had no effect on guinea pig and rabbit myocytes. The properties of adenosine-activated outward current in rat and ferret ventricular myocytes indicated that this current is the adenosine-sensitive K+ current [IK(Ado)]. Adenosine had no significant effect on basal Ca2+ current but specifically inhibited isoproterenol-stimulated L-type Ca2+ current in myocytes of all species studied. Binding studies revealed that the density of A1 adenosine receptors (A1AdoR) was highest in ferret and lowest in rabbit myocytes, but the differential effects of adenosine among species could not be solely explained by differences in A1AdoR density. In summary, adenosine shortened the action potential and reduced the twitch shortening of rat and ferret but not of guinea pig and rabbit ventricular myocytes. Shortening of the action potential was associated with the activation of IK(Ado). The anti-beta-adrenergic action of adenosine appeared to be independent of species.


1989 ◽  
Vol 67 (7) ◽  
pp. 734-739
Author(s):  
Hideharu Hayashi ◽  
Hajime Terada ◽  
Alexander Kholopov ◽  
Terence F. McDonald

The action potential configuration, developed tension, and resting tension were monitored in normoxic and hypoxic guinea pig papillary muscles superfused with solutions containing no substrate, glucose, or acetate (1–10 mM). In normoxic muscle, acetate provoked a concentration-dependent transient depression of the action potential duration and force of contraction, depression was maximal after 10–30 min, and recovery was complete after 90–120 min. In hypoxic muscle, acetate accelerated functional rundown (action potential shortening, decline of developed tension, increase in resting tension). Because rundown in hypoxic muscle was sensitive to factors affecting glycolysis (moderated by external glucose; accentuated by 2-deoxyglucose), the accentuated rundown with acetate may be accounted for by a partial block of glycolysis. However, block of glycolysis cannot explain the acetate-induced transient depression in normoxic muscle, since the depression was enhanced in normoxic muscle with 2-deoxyglucose-blocked glycolysis. We suggest that the transient depression is due to a transient depression of high energy nucleotides with consequent effects on ionic currents.Key words: acetate, action potential duration, 2-deoxyglucose, hypoxia, ATP.


Sign in / Sign up

Export Citation Format

Share Document