action potential prolongation
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 8)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jazmin Aguado-Sierra ◽  
Constantine Butakoff ◽  
Renee Brigham ◽  
Apollo Baron ◽  
Guillaume Houzeaux ◽  
...  

AbstractDrug-induced arrhythmia continues to be a major health issue worldwide. The need for reliable pro-arrhythmic predictors became relevant during early phases of the SarsCoV2 pandemic, when it was uncertain whether the use of hydroxychloroquine (HCQ) and azithromycin (AZM) could be more harmful than beneficial due to their reported pro-arrhythmic effects.In this work we describe a computational framework that employs a gender-specific, in-silico cardiac population to assess cardiac drug-induced QT-prolongation after the administration of a single or a combination of potentially cardiotoxic drugs as HCQ and AZM. This novel computational methodology is capable of reproducing the complex behavior of the clinical electrocardiographic response to drug-induced arrhythmic risk, in-silico. Using high performance computing, the computational framework allows the estimation of the arrhythmic risk in a population, given a variety of doses of one or more drugs in a timely manner and providing markers that can be directly related to the clinical scenario. The pro-arrhythmic behavior observed in subjects within the in-silico trial, was also compared to supplemental in-vitro experiments on a reanimated swine hearts. Evidence of transmurally heterogeneous action potential prolongation after the administration of a large dose of HCQ was an observed mechanism of arrhythmia, both in the in-vitro and the in-silico model. The virtual clinical trial also provided remarkably similar results to recent published clinical data. In conclusion, the in-silico clinical trial on the cardiac population is capable of reproducing and providing evidence of the normal phenotype variants that produce distinct arrhythmogenic outcomes after the administration of one or various drugs.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yongfeng Liu ◽  
Xianjin Xu ◽  
Junyuan Gao ◽  
Moawiah M. Naffaa ◽  
Hongwu Liang ◽  
...  

AbstractKCNQ family K+ channels (KCNQ1-5) in the heart, nerve, epithelium and ear require phosphatidylinositol 4,5-bisphosphate (PIP2) for voltage dependent activation. While membrane lipids are known to regulate voltage sensor domain (VSD) activation and pore opening in voltage dependent gating, PIP2 was found to interact with KCNQ1 and mediate VSD-pore coupling. Here, we show that a compound CP1, identified in silico based on the structures of both KCNQ1 and PIP2, can substitute for PIP2 to mediate VSD-pore coupling. Both PIP2 and CP1 interact with residues amongst a cluster of amino acids critical for VSD-pore coupling. CP1 alters KCNQ channel function due to different interactions with KCNQ compared with PIP2. We also found that CP1 returned drug-induced action potential prolongation in ventricular myocytes to normal durations. These results reveal the structural basis of PIP2 regulation of KCNQ channels and indicate a potential approach for the development of anti-arrhythmic therapy.


2020 ◽  
Vol 13 (6) ◽  
Author(s):  
Georg Gussak ◽  
William Marszalec ◽  
Shin Yoo ◽  
Rishi Modi ◽  
Caitlin O’Callaghan ◽  
...  

Background: We have identified a novel form of abnormal Ca 2+ wave activity in normal and failing dog atrial myocytes which occurs during the action potential (AP) and is absent during diastole. The goal of this study was to determine if triggered Ca 2+ waves affect cellular electrophysiological properties. Methods: Simultaneous recordings of intracellular Ca 2+ and APs allowed measurements of maximum diastolic potential and AP duration during triggered calcium waves (TCWs) in isolated dog atrial myocytes. Computer simulations then explored electrophysiological behavior arising from TCWs at the tissue scale. Results: At 3.3 to 5 Hz, TCWs occurred during the AP and often outlasted several AP cycles. Maximum diastolic potential was reduced, and AP duration was significantly prolonged during TCWs. All electrophysiological responses to TCWs were abolished by SEA0400 and ORM10103, indicating that Na-Ca exchange current caused depolarization. The time constant of recovery from inactivation of Ca 2+ current was 40 to 70 ms in atrial myocytes (depending on holding potential) so this current could be responsible for AP activation during depolarization induced by TCWs. Modeling studies demonstrated that the characteristic properties of TCWs are potentially arrhythmogenic by promoting both conduction block and reentry arising from the depolarization induced by TCWs. Conclusions: Triggered Ca 2+ waves activate inward NCX and dramatically reduce atrial maximum diastolic potential and prolong AP duration, establishing the substrate for reentry which could contribute to the initiation and maintenance of atrial arrhythmias.


2019 ◽  
Vol 316 (2) ◽  
pp. C154-C161 ◽  
Author(s):  
Man Si ◽  
Krystle Trosclair ◽  
Kathryn A. Hamilton ◽  
Edward Glasscock

Voltage-gated Kv1.1 potassium channel α-subunits, encoded by the Kcna1 gene, have traditionally been regarded as neural-specific with no expression or function in the heart. However, recent data revealed that Kv1.1 subunits are expressed in atria where they may have an overlooked role in controlling repolarization and arrhythmia susceptibility independent of the nervous system. To explore this concept in more detail and to identify functional and molecular effects of Kv1.1 channel impairment in the heart, atrial cardiomyocyte patch-clamp electrophysiology and gene expression analyses were performed using Kcna1 knockout ( Kcna1−/−) mice. Specifically, we hypothesized that Kv1.1 subunits contribute to outward repolarizing K+ currents in mouse atria and that their absence prolongs cardiac action potentials. In voltage-clamp experiments, dendrotoxin-K (DTX-K), a Kv1.1-specific inhibitor, significantly reduced peak outward K+ currents in wild-type (WT) atrial cells but not Kcna1−/− cells, demonstrating an important contribution by Kv1.1-containing channels to mouse atrial repolarizing currents. In current-clamp recordings, Kcna1−/− atrial myocytes exhibited significant action potential prolongation which was exacerbated in right atria, effects that were partially recapitulated in WT cells by application of DTX-K. Quantitative RT-PCR measurements showed mRNA expression remodeling in Kcna1−/− atria for several ion channel genes that contribute to the atrial action potential including the Kcna5, Kcnh2, and Kcnj2 potassium channel genes and the Scn5a sodium channel gene. This study demonstrates a previously undescribed heart-intrinsic role for Kv1.1 subunits in mediating atrial repolarization, thereby adding a new member to the already diverse collection of known K+ channels in the heart.


2019 ◽  
Vol 597 (6) ◽  
pp. 1531-1551 ◽  
Author(s):  
Leonid Tyan ◽  
Jason D. Foell ◽  
Kevin P. Vincent ◽  
Marites T. Woon ◽  
Walatta T. Mesquitta ◽  
...  

2019 ◽  
Vol 151 (2) ◽  
pp. 214-230 ◽  
Author(s):  
Kazuharu Furutani ◽  
Kunichika Tsumoto ◽  
I-Shan Chen ◽  
Kenichiro Handa ◽  
Yuko Yamakawa ◽  
...  

Drug-induced block of the cardiac rapid delayed rectifying potassium current (IKr), carried by the human ether-a-go-go-related gene (hERG) channel, is the most common cause of acquired long QT syndrome. Indeed, some, but not all, drugs that block hERG channels cause fatal cardiac arrhythmias. However, there is no clear method to distinguish between drugs that cause deadly arrhythmias and those that are clinically safe. Here we propose a mechanism that could explain why certain clinically used hERG blockers are less proarrhythmic than others. We demonstrate that several drugs that block hERG channels, but have favorable cardiac safety profiles, also evoke another effect; they facilitate the hERG current amplitude in response to low-voltage depolarization. To investigate how hERG facilitation impacts cardiac safety, we develop computational models of IKr block with and without this facilitation. We constrain the models using data from voltage clamp recordings of hERG block and facilitation by nifekalant, a safe class III antiarrhythmic agent. Human ventricular action potential simulations demonstrate the ability of nifekalant to suppress ectopic excitations, with or without facilitation. Without facilitation, excessive IKr block evokes early afterdepolarizations, which cause lethal arrhythmias. When facilitation is introduced, early afterdepolarizations are prevented at the same degree of block. Facilitation appears to prevent early afterdepolarizations by increasing IKr during the repolarization phase of action potentials. We empirically test this prediction in isolated rabbit ventricular myocytes and find that action potential prolongation with nifekalant is less likely to induce early afterdepolarization than action potential prolongation with dofetilide, a hERG channel blocker that does not induce facilitation. Our data suggest that hERG channel blockers that induce facilitation increase the repolarization reserve of cardiac myocytes, rendering them less likely to trigger lethal ventricular arrhythmias.


Redox Biology ◽  
2018 ◽  
Vol 19 ◽  
pp. 190-199 ◽  
Author(s):  
Seong Woo Choi ◽  
Si Won Choi ◽  
Young Keul Jeon ◽  
Sung-Hwan Moon ◽  
Yin-Hua Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document