Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway

Author(s):  
VALENTIN BURKI ◽  
LOUISE HANSEN ◽  
OLA FREDIN ◽  
THORBJØRN A. ANDERSEN ◽  
ACHIM A. BEYLICH ◽  
...  
The Holocene ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Asbjørn Rune Aa ◽  
Eivind Sønstegaard

Marginal moraines on the northern side of Grovabreen, a plateau glacier in inner Sunnfjord, Western Norway, have been mapped and morphostratigraphically correlated with the Erdalen Event and possibly the Finse Event and the ‘Little Ice Age’. Schmidt-hammer exposure-age dating was used to evaluate the age of the most distinct marginal moraines by measuring the degree of surface weathering on boulders. The lithostratigraphy of lake sediments was analysed in a core from Dalevatnet in order to correlate this stratigraphy with the marginal moraines in the catchment area of the lake and reconstruct the early-Holocene history of Grovabreen. The lake catchment was deglaciated at 10,750 cal. yr BP. Two readvances of an outlet glacier in Fagredalen were dated to between 10,340 and 9960 cal. yr BP, correlated with the two-peaked Erdalen Event. A readvance shortly after 8450 cal. yr BP can most probably be correlated with the 8200 cal. yr BP Finse Event.


The Holocene ◽  
2018 ◽  
Vol 28 (10) ◽  
pp. 1609-1622 ◽  
Author(s):  
Helene Løvstrand Svarva ◽  
Terje Thun ◽  
Andreas Joachim Kirchhefer ◽  
Atle Nesje

A ring-width Pinus sylvestris chronology from Sogndal in western Norway was created, covering the period AD 1240–2008 and allowing for reconstruction of monthly mean July temperatures. This reconstruction is the first of its kind from western Norway and it aims to densify the existing network of temperature-sensitive tree-ring proxy series to better understand past temperature variability in the ‘Little Ice Age’ and diminish the spatial uncertainty. Spatial correlation reveals strong agreement with temperatures in southern Norway, especially on the western side of the Scandinavian Mountains. Five prominent cold periods are identified on a decadal timescale, centred on 1480, 1580, 1635, 1709 and 1784 and ‘Little Ice Age’ cooling spanning from 1450 to the early 18th century. High interannual and decadal agreement is found with an independent temperature reconstruction from western Norway, which is based on data from grain harvests and terminal moraines. The reconstructed temperatures also correlate with other tree-ring-based temperature reconstructions from Fennoscandia, most strongly with data from central Sweden. Tree growth in Sogndal is correlated to the Scandinavian teleconnection index in the summer months, at least in the last half of the 20th century, and is positively correlated to the summer expression of the North Atlantic Oscillation in the early half of the 20th century. A significant response to major volcanic forcing in the Northern Hemisphere was found, and extreme years seem to be related to the dominance of high and low geopotential height that in turn represents variability in the path of the storm tracks over Fennoscandia. When compared with the variation in frontal positions with time of Nigardsbreen, an eastern outlet glacier from the Jostedalsbreen glacier in western Norway, cold summers in the early 18th century relates to the culmination of a rapid glacial advance that lead up to the 1748 ‘Little Ice Age’ maximum extent.


2014 ◽  
Vol 8 (4) ◽  
pp. 1497-1507 ◽  
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40–50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.


JOKULL ◽  
2021 ◽  
Vol 70 ◽  
pp. 119-128
Author(s):  
Snaevarr Gudmundsson ◽  
Helgi Björnsson

The glacial river Jökulsá á Breiðamerkursandi drains the Jökulsárlón tidal lagoon (27 km2), in Southeast Iceland. Despite being the shortest glacial outlet (0.6 km), it is among the most voluminous rivers in Iceland, with an estimated average drainage of 250–300 m3/s and has doubled its volume at peak runoff. Until a bridge was established, this was one of Iceland’s most infamous river and for travellers, cruising on horseback, the greatest obstacle to cross on the main road. The river began shaping its present channel in the late 19th century but was not permanently settled until the mid-20th century. Before that it used to wander around the fan, occasionally in several branches, or as a single heavy moving water. In this paper we present a map of its known runoffs and channels that were formed in the 19th and 20th centuries. Few channels were digitized from old maps, but several of those were identified and recorded by the late Flosi Björnsson (1906–1993), a farmer from the Kvísker, who guided travellers across the river before the bridge was built. The Breiðamerkurjökull outlet glacier of Vatnajökull, Southeast Iceland, advanced 10–15 km during the Little Ice Age. During the LIA advance the wide fan shaped shore in front of Breiðamerkurjökull gradually extended outward by >1 km, mainly due to sediment deposition by the Jökulsá river and few other temporal glacial river branches. At the turn of the 20th century the outlet glacier started to retreat slowly and in the 1930s terminal lakes were formed. With the formation of the Jökulsárlón tidal lagoon river dumping at the shore terminated and was replaced by a progressive coastal erosion. Currently ca. 0.9 km has eroded off the coast since the 1930s. A 0.65 km wide strip now remains between the coast and Jökulsárlón tidal lagoon, where the Jökulsá river and the remains of its former runway channels are located.


2020 ◽  
Author(s):  
Bethan Davies ◽  

<p>We present PATICE, a GIS database of Patagonian glacial geomorphology and recalibrated chronostratigraphic data. PATICE includes 58,823 landforms and 1,669 ages, and extends from 38°S to 55°S in southern South America. We use these data to generate new empirical reconstructions of the Patagonian Ice Sheet (PIS) and subsequent ice masses and ice-dammed palaeolakes at 35 ka, 30 ka, 25 ka, 20 ka, 15 ka, 13 ka (synchronous with the Antarctic Cold Reversal), 10 ka, 5 ka, 0.2 ka (synchronous with the “Little Ice Age”) and 2011 AD. At 35 ka, the PIS covered of 492.6 x10<sup>3 </sup>km<sup>2</sup>, had a sea level equivalent of ~1,496 mm, was 350 km wide and 2090 km long, and was grounded on the Pacific continental shelf edge. Outlet glacier lobes remained topographically confined and the largest generated the suites of subglacial streamlined bedforms characteristic of ice streams. The PIS reached its maximum extent at 33 – 28 ka from 38°S to 48°S, and earlier, around 47 ka from 48°S southwards. Net retreat from maximum positions began by 25 ka, with ice-marginal stabilisation at 21 – 18 ka, followed by rapid deglaciation. By 15 ka, the PIS had separated into disparate ice masses, draining into large ice-dammed lakes along the eastern margin, which strongly influenced rates of recession. Glacial readvances or stabilisations occurred at 14 – 13 ka, 11 ka, 5 – 6 ka, 1 – 2 ka, and 0.2 ka. We suggest that 20<sup>th</sup> century glacial recession is occurring faster than at any time documented during the Holocene. </p>


Sign in / Sign up

Export Citation Format

Share Document