scholarly journals Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

2014 ◽  
Vol 8 (4) ◽  
pp. 1497-1507 ◽  
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40–50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.

2014 ◽  
Vol 8 (1) ◽  
pp. 1257-1278
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance at the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 10 to more than 150 yr. We show that although the frontal portion of HG thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, KG was stable from 1981 to 1998 and experienced major thinning only after 2003. Extending the record back to the end of the Little Ice Age (ca. 1850) shows no significant thinning of HG from 1850 to 1981, while KG underwent substantial thinning of ~265 m. Analyses of their sensitivity to sub-surface water temperature anomalies and variations in air temperature suggest that both HG and KG are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. At century time-scales, however, multiple external parameters (e.g. outlet shape) dominate the mass change. These findings undermine attempts to use measurements over the last decade as initial conditions to project future dynamic ice loss.


1992 ◽  
Vol 16 ◽  
pp. 11-16 ◽  
Author(s):  
Liu Chaohai ◽  
Han Tianding

Since the Little Ice Age, most glaciers in the Tien Shan mountains have been retreating. Owing to an increase in precipitation in most parts of the mountains during the late 1950s to early 1970s, the percentage of receding glaciers and the speed of retreat have tended to decrease in the 1970s. However, the general trend of continuous glacier retreat remains unchanged, in part because the summer air temperature shows no tendency to decrease.In the Tien Shan mountains, as the degree of climatic continentality increases the mass balance becomes more dependent on summer temperature, and accumulation and ablation tend to be lower. Therefore, the responses of glaciers to climatic fluctuations in more continental areas are not synchronous with those in less continental areas, and the amplitude of the glacier variations becomes smaller.


1986 ◽  
Vol 26 (1) ◽  
pp. 27-48 ◽  
Author(s):  
Stephen C. Porter

Time series depicting mountain glacier fluctuations in the Alps display generally similar patterns over the last two centuries, as do chronologies of glacier variations for the same interval from elsewhere in the Northern Hemisphere. Episodes of glacier advance consistently are associated with intervals of high average volcanic aerosol production, as inferred from acidity variations in a Greenland ice core. Advances occur whenever acidity levels rise sharply from background values to reach concentrations ≥1.2 μequiv H+/kg above background. A phase lag of about 10–15 yr, equivalent to reported response lags of Alpine glacier termini, separates the beginning of acidity increases from the beginning of subsequent ice advances. A similar relationship, but based on limited and less-reliable historical data and on lichenometric ages, is found for the preceding 2 centuries. Calibrated radiocarbon dates related to advances of non-calving and non-surging glaciers during the earlier part of the Little Ice Age display a comparable consistent pattern. An interval of reduced acidity values between about 1090 and 1230 A.D. correlates with a time of inferred glacier contraction during the Medieval Optimum. The observed close relation between Noothern Hemisphere glacier fluctuations and variations in Greenland ice-core acidity suggests that sulfur-rich aerosols generated by volcanic eruptions are a primary forcing mechanism of glacier fluctuations, and therefore of climate, on a decadal scale. The amount of surface cooling attributable to individual large eruptions or to episodes of eruptions is simlar to the probable average temperature reduction during culminations of Little Ice Age alacier advances (ca. 0.5°–1.2°C), as inferred from depression of equilibrium-line altitudes.


2001 ◽  
Vol 47 (159) ◽  
pp. 579-588 ◽  
Author(s):  
L. A. Rasmussen ◽  
H. Conway

AbstractA simple flux model using twice-daily measurements of wind, humidity and temperature from standard upper-air levels in a distant radiosonde estimated winter balance of South Cascade Glacier, Washington, U.S.A., over 1959–98 with error 0.24 m w.e. Correlation between net and winter balance is strong; the model estimates net balance with error 0.53 m w.e. Over the past 40 years, average net balance of South Cascade Glacier has been strongly negative (−0.46 m w.e.), and it has been shrinking steadily. In comparison, 200 km west-southwest at Blue Glacier, the average balance has been less negative (−0.13 m w.e); that glacier has undergone little change over the 40 years. Balance histories of the two glaciers are positively correlated (r = +0.54), and South Cascade has been more out of balance than Blue, presumably because it is still adjusting to climate change since the Little Ice Age. Recent warming and drying has made the net balance of both glaciers strongly negative since 1976 (−0.84 m w.e. at South Cascade, −0.56 m w.e. at Blue). If South Cascade Glacier were in balance with the 1986–98 climate, it would be about one-quarter of its present area.


Author(s):  
Т.Р. Макарова

Изучение разреза торфяника в бассейне р. Большая Уссурка (Приморье) позволило выявить изменения увлажненности. Установлен период продолжительных засух, совпадавших с ослаблением летнего муссона. Несмотря на сухие условия проходили паводки, вызванные тайфунами или глубокими циклонами. Влажными были малый оптимум голоцена и малый ледниковый период, характеризовавшиеся усилением циклогенеза. Отмечены кратковременные флуктуации увлажнения, периоды с разной паводковой активностью. Study of the peat bog section in the river basin Bolshaya Ussurka (Primorye) made it possible to distinguish periods with different moisture. Period of prolonged droughts was established, coinciding with the weakening of the summer monsoon. Dry conditions did not exclude floods due to the passage of typhoons or deep cyclones. The low optimum of the Holocene and the Little Ice Age, characterized by increased cyclogenesis, were humid. Short-term fluctuations of moisture, periods with different flood activity were noted.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 272
Author(s):  
Stephanie Suzanne Weidemann ◽  
Jorge Arigony-Neto ◽  
Ricardo Jaña ◽  
Guilherme Netto ◽  
Inti Gonzalez ◽  
...  

The Cordillera Darwin Icefield loses mass at a similar rate as the Northern and Southern Patagonian Icefields, showing contrasting individual glacier responses, particularly between the north-facing and south-facing glaciers, which are subject to changing climate conditions. Detailed investigations of climatic mass balance processes on recent glacier behavior are not available for glaciers of the Cordillera Darwin Icefield and surrounding icefields. We therefore applied the coupled snow and ice energy and mass balance model in Python (COSIPY) to assess recent surface energy and mass balance variability for the Schiaparelli Glacier at the Monte Sarmiento Massif. We further used COSIPY to simulate steady-state glacier conditions during the Little Ice Age using information of moraine systems and glacier areal extent. The model is driven by downscaled 6-hourly atmospheric data and high resolution precipitation fields, obtained by using an analytical orographic precipitation model. Precipitation and air temperature offsets to present-day climate were considered to reconstruct climatic conditions during the Little Ice Age. A glacier-wide mean annual climatic mass balance of −1.8 ± 0.36 m w.e. a − 1 was simulated between between April 2000 and March 2017. An air temperature decrease between −0.9 ° C and −1.7 ° C in combination with a precipitation offset of up to +60% to recent climate conditions is necessary to simulate steady-state conditions for Schiaparelli Glacier in 1870.


JOKULL ◽  
2021 ◽  
Vol 70 ◽  
pp. 119-128
Author(s):  
Snaevarr Gudmundsson ◽  
Helgi Björnsson

The glacial river Jökulsá á Breiðamerkursandi drains the Jökulsárlón tidal lagoon (27 km2), in Southeast Iceland. Despite being the shortest glacial outlet (0.6 km), it is among the most voluminous rivers in Iceland, with an estimated average drainage of 250–300 m3/s and has doubled its volume at peak runoff. Until a bridge was established, this was one of Iceland’s most infamous river and for travellers, cruising on horseback, the greatest obstacle to cross on the main road. The river began shaping its present channel in the late 19th century but was not permanently settled until the mid-20th century. Before that it used to wander around the fan, occasionally in several branches, or as a single heavy moving water. In this paper we present a map of its known runoffs and channels that were formed in the 19th and 20th centuries. Few channels were digitized from old maps, but several of those were identified and recorded by the late Flosi Björnsson (1906–1993), a farmer from the Kvísker, who guided travellers across the river before the bridge was built. The Breiðamerkurjökull outlet glacier of Vatnajökull, Southeast Iceland, advanced 10–15 km during the Little Ice Age. During the LIA advance the wide fan shaped shore in front of Breiðamerkurjökull gradually extended outward by >1 km, mainly due to sediment deposition by the Jökulsá river and few other temporal glacial river branches. At the turn of the 20th century the outlet glacier started to retreat slowly and in the 1930s terminal lakes were formed. With the formation of the Jökulsárlón tidal lagoon river dumping at the shore terminated and was replaced by a progressive coastal erosion. Currently ca. 0.9 km has eroded off the coast since the 1930s. A 0.65 km wide strip now remains between the coast and Jökulsárlón tidal lagoon, where the Jökulsá river and the remains of its former runway channels are located.


2018 ◽  
Vol 115 (49) ◽  
pp. 12413-12418 ◽  
Author(s):  
Melinda R. Nicewonger ◽  
Murat Aydin ◽  
Michael J. Prather ◽  
Eric S. Saltzman

Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000–1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600–1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate.


2017 ◽  
Vol 11 (1) ◽  
pp. 281-302 ◽  
Author(s):  
Henning Åkesson ◽  
Kerim H. Nisancioglu ◽  
Rianne H. Giesen ◽  
Mathieu Morlighem

Abstract. Understanding of long-term dynamics of glaciers and ice caps is vital to assess their recent and future changes, yet few long-term reconstructions using ice flow models exist. Here we present simulations of the maritime Hardangerjøkulen ice cap in Norway from the mid-Holocene through the Little Ice Age (LIA) to the present day, using a numerical ice flow model combined with glacier and climate reconstructions. In our simulation, under a linear climate forcing, we find that Hardangerjøkulen grows from ice-free conditions in the mid-Holocene to its maximum extent during the LIA in a nonlinear, spatially asynchronous fashion. During its fastest stage of growth (2300–1300 BP), the ice cap triples its volume in less than 1000 years. The modeled ice cap extent and outlet glacier length changes from the LIA until today agree well with available observations. Volume and area for Hardangerjøkulen and several of its outlet glaciers vary out-of-phase for several centuries during the Holocene. This volume–area disequilibrium varies in time and from one outlet glacier to the next, illustrating that linear relations between ice extent, volume and glacier proxy records, as generally used in paleoclimatic reconstructions, have only limited validity. We also show that the present-day ice cap is highly sensitive to surface mass balance changes and that the effect of the ice cap hypsometry on the mass balance–altitude feedback is essential to this sensitivity. A mass balance shift by +0.5 m w.e. relative to the mass balance from the last decades almost doubles ice volume, while a decrease of 0.2 m w.e. or more induces a strong mass balance–altitude feedback and makes Hardangerjøkulen disappear entirely. Furthermore, once disappeared, an additional +0.1 m w.e. relative to the present mass balance is needed to regrow the ice cap to its present-day extent. We expect that other ice caps with comparable geometry in, for example, Norway, Iceland, Patagonia and peripheral Greenland may behave similarly, making them particularly vulnerable to climate change.


Sign in / Sign up

Export Citation Format

Share Document