Evaluation of Anodic Behavior of Commercially Pure Titanium in Tungsten Inert Gas and Laser Welds

2011 ◽  
Vol 20 (8) ◽  
pp. 628-631 ◽  
Author(s):  
Iara Augusta Orsi ◽  
Larica B. Raimundo ◽  
Osvaldo Luiz Bezzon ◽  
Mauro Antonio de Arruda Nóbilo ◽  
Sebastião E. Kuri ◽  
...  
2013 ◽  
Vol 24 (6) ◽  
pp. 630-634 ◽  
Author(s):  
Juliana Abdallah Atoui ◽  
Daniela Nair Borges Felipucci ◽  
Valeria Oliveira Pagnano ◽  
Iara Augusta Orsi ◽  
Mauro Antonio de Arruda Nobilo ◽  
...  

This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84±19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90±37.76; laser=515.85±62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.


Alloy Digest ◽  
1979 ◽  
Vol 28 (12) ◽  

Abstract RMI 0.2% Pd is a grade of commercially pure titanium to which up to 0.2% palladium has been added. It has a guaranteed minimum yield strength of 40,000 psi with good ductility and formability. It is recommended for corrosion resistance in the chemical industry and other places where the environment is mildly reducing or varies between oxidizing and reducing. The alloy has improved resistance to crevice corrosion at low pH and elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-74. Producer or source: RMI Company.


Alloy Digest ◽  
2020 ◽  
Vol 69 (6) ◽  

Abstract UPM CP Titanium Grade 3 (UNS R50550) is an unalloyed commercially pure titanium that exhibits moderate strength (higher strength than that of Titanium Grade 2), along with excellent formability and corrosion resistance. It offers the highest ASME allowable design stress of any commercially pure grade of titanium, and can be used in continuous service up to 425 °C (800 °F) and in intermittent service up to 540 °C (1000 °F). This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-167. Producer or source: United Performance Metals.


2008 ◽  
Vol 52 (4) ◽  
pp. 501-506 ◽  
Author(s):  
Teruhisa Hirayama ◽  
Marie Koike ◽  
Tadafumi Kurogi ◽  
Akiko Shibata ◽  
Shigeru Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document