scholarly journals Gene transfer for hemophilia: can therapeutic efficacy in large animals be safely translated to patients?

2005 ◽  
Vol 3 (8) ◽  
pp. 1682-1691 ◽  
Author(s):  
K. HIGH
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1742-P
Author(s):  
KESHAB R. PARAJULI ◽  
YANQING ZHANG ◽  
HONGJU WU

2008 ◽  
Vol 7 (10) ◽  
pp. 3389-3398 ◽  
Author(s):  
François Lamoureux ◽  
Gaëlle Picarda ◽  
Julie Rousseau ◽  
Clothilde Gourden ◽  
Séverine Battaglia ◽  
...  

2007 ◽  
Vol 9 (10) ◽  
pp. 862-874 ◽  
Author(s):  
Stefania Lamartina ◽  
Monica Cimino ◽  
Giuseppe Roscilli ◽  
Ernesta Dammassa ◽  
Domenico Lazzaro ◽  
...  

2013 ◽  
Vol 133 (5) ◽  
pp. 3408-3408
Author(s):  
Carol H. Miao ◽  
Misty L. Noble ◽  
Shuxian Song ◽  
Ryan R. Sun ◽  
Christian S. Kuhr ◽  
...  
Keyword(s):  

Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Hyeoung Joon Kim ◽  
John F. Tisdale ◽  
Tong Wu ◽  
Masaaki Takatoku ◽  
Stephanie E. Sellers ◽  
...  

Retroviral insertion site analysis was used to track the contribution of retrovirally transduced primitive progenitors to hematopoiesis after autologous transplantation in the rhesus macaque model. CD34-enriched mobilized peripheral blood cells were transduced with retroviral marking vectors containing the neo gene and were reinfused after total body irradiation. High-level gene transfer efficiency allowed insertion site analysis of individual myeloid and erythroid colony-forming units (CFU) and of highly purified B- and T-lymphoid populations in 2 animals. At multiple time points up to 1 year after transplantation, retroviral insertion sites were identified by performing inverse polymerase chain reaction and sequencing vector-containing CFU or more than 99% pure T- and B-cell populations. Forty-eight unique insertion sequences were detected in the first animal and also in the second animal, and multiple clones contributed to hematopoiesis at 2 or more time points. Multipotential clones contributing to myeloid and lymphoid lineages were identified. These results support the concept that hematopoiesis in large animals is polyclonal and that individual multipotential stem or progenitor cells can contribute to hematopoiesis for prolonged periods. Gene transfer to long-lived, multipotent clones is shown and is encouraging for human gene therapy applications.


Sign in / Sign up

Export Citation Format

Share Document