ID: 337 Tissue Plasminogen Activator in Nervous System Function and Dysfunction

2006 ◽  
Vol 4 (s1) ◽  
pp. 61-61
Author(s):  
S. Strickland
2001 ◽  
Vol 86 (07) ◽  
pp. 138-143 ◽  
Author(s):  
Sidney Strickland

SummaryThe extracellular protease tissue plasminogen activator (tPA) has been implicated in various normal and pathological situations in the mammalian nervous system. The availability of (i) transgenic and knock-out mice in which the expression level of tPA can be widely varied, (ii) in vivo models for studying function and disease, and (iii) culture models for examining cell behavior, has allowed a detailed evaluation of many of these proposed functions. This chapter summarizes the current state of knowledge of possible roles for the tPA/plasminogen system in neuronal function and dysfunction.


2005 ◽  
Vol 93 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Jerry Melchor ◽  
Sidney Strickland

SummaryAlthough conventionally associated with fibrin clot degradation, recent work has uncovered new functions for the tissue plasminogen activator (tPA)/plasminogen cascade in central nervous system physiology and pathology. This extracellular proteolytic cascade has been shown to have roles in learning and memory, stress, neuronal degeneration, addiction and Alzheimer’s disease. The current review considers the different ways tPA functions in the brain.


2007 ◽  
Vol 15 (1) ◽  
pp. 16-26
Author(s):  
Ji-Woon Kim ◽  
Soon-Young Lee ◽  
So-Hyun Joo ◽  
Mi-Ryoung Song ◽  
Chan-Young Shin

2002 ◽  
Vol 30 (2) ◽  
pp. 222-225 ◽  
Author(s):  
S. E. Tsirka

The tissue plasminogen activator (tPA)/plasmin proteolytic system has been implicated in both physiological and pathological processes in the mammalian brain. The physiological roles include facilitating neurite outgrowth and pathfinding. The pathological role involves mediating a critical step in the progression of excitotoxin-induced neurodegeneration. Mechanistically, tPA appears to function through two pathways. The first pathway proceeds via its well established ability to convert plasminogen into plasmin. Plasmin then either promotes neuronal death via both the degradation of the extracellular matrix and the establishment of chemoattractant gradients for microglia, or facilitates neurite outgrowth through the processing of extracellular matrix proteoglycans. The second pathway for tPA does not involve its proteolytic activity: rather tPA functions as an agonist to stimulate a cell-surface receptor on microglia (the macrophage-like immunocompetent cells of the central nervous system) and results in their activation. Once activated after neuronal injury, microglia contribute to the ensuing neurodegeneration. Using tPA as a link between neurons and microglia, we are focusing on understanding their communication and interactions in the normal and diseased central nervous system.


1997 ◽  
Vol 17 (23) ◽  
pp. 8984-8996 ◽  
Author(s):  
Stefan R. Krueger ◽  
Gian-Piero Ghisu ◽  
Paolo Cinelli ◽  
Thomas P. Gschwend ◽  
Thomas Osterwalder ◽  
...  

2000 ◽  
Vol 149 (5) ◽  
pp. 1157-1166 ◽  
Author(s):  
Katerina Akassoglou ◽  
Keith W. Kombrinck ◽  
Jay L. Degen ◽  
Sidney Strickland

Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell–produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies.


2004 ◽  
Vol 92 (08) ◽  
pp. 358-368 ◽  
Author(s):  
Andres Kulla ◽  
Aadu Simisker ◽  
Vappu Sirén ◽  
Daniel Lawrence ◽  
Toomas Asser ◽  
...  

SummaryTissue plasminogen activator (tPA) is increasingly recognized to play important roles in various physiological and pathological processes in the central nervous system (CNS). Much of the data on the involvement of plasminogen activators in neurophysiology and -pathology have been derived from studies on experimental animals. We have now performed a systematic characterization of the expression of tPA and its inhibitor, neuroserpin, in normal human CNS. Brain and spinal cord samples from 30-36 anatomic locations covering all major brain regions were collected at 9 autopsies of donors with no neurological disease. Tissues were embedded in paraffin and tissue arrays were constructed. In two cases parallel samples were snap-frozen for biochemical analysis. Expression and activity profiling of tPA and neuroserpin were performed by immunohistochemistry, in situ hybridization, immunocapture and zymography assays. In the adult CNS, tPA was expressed at the mRNA and protein levels in many types of neurons, in particular in thalamus, cortex of cerebellum, pontine nuclei, neocortex, limbic system, and medulla oblongata. Interestingly, tPA was often co-expressed with its CNS inhibitor, neuroserpin. Despite overlapping expression of tPA and neuroserpin, zymography and immunocapture assays demonstrated that human neural tissue is a rich source of active tPA. Our analysis documents a detailed map of expression of tPA and its inhibitor in the human CNS and is compatible with the view that tPA is a key player in CNS physiology and pathology.


Sign in / Sign up

Export Citation Format

Share Document