scholarly journals QUANTITATIVE GENETICS OF BRYOZOAN PHENOTYPIC EVOLUTION. III. PHENOTYPIC PLASTICITY AND THE MAINTENANCE OF GENETIC VARIATION

Evolution ◽  
1995 ◽  
Vol 49 (2) ◽  
pp. 290-296 ◽  
Author(s):  
Alan H. Cheetham ◽  
Jeremy B. C. Jackson ◽  
Lee-Ann C. Hayek
2021 ◽  
Author(s):  
Greg M. Walter ◽  
Delia Terranova ◽  
James Clark ◽  
Salvatore Cozzolino ◽  
Antonia Cristaudo ◽  
...  

AbstractGenetic correlations between traits are expected to constrain the rate of adaptation by concentrating genetic variation in certain phenotypic directions, which are unlikely to align with the direction of selection in novel environments. However, if genotypes vary in their response to novel environments, then plasticity could create changes in genetic variation that will determine whether genetic constraints to adaptation arise. We tested this hypothesis by mating two species of closely related, but ecologically distinct, Sicilian daisies (Senecio, Asteraceae) using a quantitative genetics breeding design. We planted seeds of both species across an elevational gradient that included the native habitat of each species and two intermediate elevations, and measured eight leaf morphology and physiology traits on established seedlings. We detected large significant changes in genetic variance across elevation and between species. Elevational changes in genetic variance within species were greater than differences between the two species. Furthermore, changes in genetic variation across elevation aligned with phenotypic plasticity. These results suggest that to understand adaptation to novel environments we need to consider how genetic variance changes in response to environmental variation, and the effect of such changes on genetic constraints to adaptation and the evolution of plasticity.


Author(s):  
Bruce Walsh ◽  
Michael Lynch

One of the major unresolved issues in quantitative genetics is what accounts for the amount of standing genetic variation in traits. A wide range of models, all reviewed in this chapter, have been proposed, but none fit the data, either giving too much variation or too little apparent stabilizing selection.


2020 ◽  
Vol 125 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Silvia Matesanz ◽  
Marina Ramos-Muñoz ◽  
Mario Blanco-Sánchez ◽  
Adrián Escudero

Abstract Background and Aims Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. Methods We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. Key Results In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. Conclusions Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.


Sign in / Sign up

Export Citation Format

Share Document