neutral genetic variation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hari Won ◽  
Hyung-Bae Jeon ◽  
Dong-Young Kim ◽  
Ho Young Suk

AbstractGiven the fact that threatened species are often composed of isolated small populations, spatial continuity or demography of the populations may be major factors that have shaped the species’ genetic diversity. Thus, neutral loci have been the most commonly-used markers in conservation genetics. However, the populations under the influence of different environmental factors may have evolved in response to different selective pressures, which cannot be fully reflected in neutral genetic variation. Rhodeus pseudosericeus, a bitterling species (Acheilognathidae; Cypriniformes) endemic to the Korean Peninsula, are only found in some limited areas of three rivers, Daecheon, Han and Muhan, that flow into the west coast. Here, we genotyped 24 microsatellite loci and two loci (DAB1 and DAB3) of MHC class II peptide-binding β1 domain for 222 individuals collected from seven populations. Our microsatellite analysis revealed distinctive differentiation between the populations of Daecheon and Muhan Rivers and the Han River populations, and populations were structured into two subgroups within the Han River. Apparent positive selection signatures were found in the peptide-binding residues (PBRs) of the MHC loci. The allelic distribution of MHC showed a degree of differentiation between the populations of Daecheon and Muhan Rivers and the Han River populations, partially similar to the results obtained for microsatellites, however showed rather complex patterns among populations in the Han River. Considering the apparent differences in the distribution of supertypes obtained based on the physicochemical differences induced by the polymorphisms of these PBRs, the differentiation in DAB1 between the two regional groups may result in the differences in immune function. No differentiation between these two regions was observed in the supertyping of DAB3, probably indicating that only DAB1 was associated with the response to locally specialized antigenic peptides.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11139
Author(s):  
Guillermo Blanco ◽  
Francisco Morinha

The assessment of temporal variation in genetic features can be particularly informative on the factors behind demography and viability of wildlife populations and species. We used molecular methods to evaluate neutral genetic variation, relatedness, bottlenecks, and inbreeding in a declining population of Egyptian vulture (Neophron percnopterus) in central Spain. The results show that the genetic diversity remained relatively stable over a period of twelve years despite the decline in census and effective population sizes in the last decades. A relatively high proportion of nestlings from different and distant territories showed high relatedness in each study year. We also found support for an increasing impact of severe recent (contemporary) rather than distant (historical) past demographic bottlenecks, and the first evidence of inbred mating between full siblings coinciding with lethal malformations in offspring. The inbred nestling with feather malformations was positive to beak and feather disease virus recorded for the first time in this species. These results alert on recent and novel threats potentially affecting health and reducing the adaptive potential of individuals in this threatened species.


Author(s):  
Debra Van Egeren ◽  
Alexander Novokhodko ◽  
Madison Stoddard ◽  
Uyen Tran ◽  
Bruce Zetter ◽  
...  

As many prophylactics targeting SARS-CoV-2 are aimed at the spike protein receptor-binding domain (RBD), we examined the risk of immune evasion from previously published RBD-targeting neutralizing antibodies (nAbs). Epitopes for RBD-targeting nAbs overlap one another substantially and can give rise to escape mutants with ACE2 affinities comparable to wild type that still infect cells in vitro. We used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to single or double antibody combinations can develop quickly under positive selection.


Author(s):  
Noga Zelener ◽  
María Cristina Soldati ◽  
María Virginia Inza ◽  
Leonardo A. Gallo ◽  
Luis F. Fornes

2020 ◽  
Vol 117 (42) ◽  
pp. 26183-26189
Author(s):  
Tesla A. Monson ◽  
Diego Fecker ◽  
Marc Scherrer

Teeth have been studied for decades and continue to reveal information relevant to human evolution. Studies have shown that many traits of the outer enamel surface evolve neutrally and can be used to infer human population structure. However, many of these traits are unavailable in archaeological and fossil individuals due to processes of wear and taphonomy. Enamel–dentine junction (EDJ) morphology, the shape of the junction between the enamel and the dentine within a tooth, captures important information about tooth development and vertebrate evolution and is informative because it is subject to less wear and thus preserves more anatomy in worn or damaged specimens, particularly in mammals with relatively thick enamel like hominids. This study looks at the molar EDJ across a large sample of human populations. We assessed EDJ morphological variation in a sample of late Holocene modern humans (n= 161) from archaeological populations using μ-CT biomedical imaging and geometric morphometric analyses. Global variation in human EDJ morphology was compared to the statistical expectations of neutral evolution and “Out of Africa” dispersal modeling of trait evolution. Significant correlations between phenetic variation and neutral genetic variation indicate that EDJ morphology has evolved neutrally in humans. While EDJ morphology reflects population history, its global distribution does not follow expectations of the Out of Africa dispersal model. This study increases our knowledge of human dental variation and contributes to our understanding of dental development more broadly, with important applications to the investigation of population history and human genetic structure.


2020 ◽  
Vol 33 (3) ◽  
pp. 608-618
Author(s):  
CAMILA GEOVANA FERRO ◽  
TATIANE CARLA SILVA ◽  
SAMARA NUNES CAMPOS VICENTINI ◽  
GUILHERME MORAES FERRAUDO ◽  
PAULO CEZAR CERESINI

ABSTRACT Populations of the soybean leaf blight pathogen (Rhizoctonia solani AG-1 IA) are highly genetically differentiated along a latitudinal gradient in the major soybean growing regions of Brazil. However, the evolutionary processes leading to regional adaptation are still unknown. The objective of this study was to evaluate the relative importance of neutral genetic variation and natural selection on the divergence and regional adaptation of populations of the soybean-infecting pathogen R. solani AG-1 IA. Therefore, we compared the phenotypic differentiation in quantitative traits (QST) and the neutral genetic differentiation (FST, based on microsatellites data) among three pairs of populations. As measures of phenotypic responses of the fungus (quantitative traits), we estimated the tolerance to temperature stress and the tolerance to a broad-spectrum fungicide (copper oxychloride) under optimal (25 °C) and high temperature conditions (33.5 °C). In general there was an increase in genetic variance with a positive effect on the heritability for tolerance to copper fungicide under temperature stress. The genetic differences among populations were the main determinants of thermal adaptation in R. solani AG-1 IA (h2 > 0.70). The analysis of neutral genetic structure (FST) indicated subdivision between the three pairs of populations. Although population pairwise comparisons between FST and QST values did not follow a single pattern, the majority of QST values did not differ significantly from FST, indicating that, for the quantitative characters studied, neutrality (or neutral evolution) had a major role in the regional adaptation of R. solani AG-1 IA populations.


2020 ◽  
Vol 117 (20) ◽  
pp. 10769-10777 ◽  
Author(s):  
Hannes Rathmann ◽  
Hugo Reyes-Centeno

Researchers commonly rely on human dental morphological features in order to reconstruct genetic affinities among past individuals and populations, particularly since teeth are often the best preserved part of a human skeleton. Tooth form is considered to be highly heritable and selectively neutral and, therefore, to be an excellent proxy for DNA when none is available. However, until today, it remains poorly understood whether certain dental traits or trait combinations preserve neutral genomic signatures to a greater degree than others. Here, we address this long-standing research gap by systematically testing the utility of 27 common dental traits and >134 million possible trait combinations in reflecting neutral genomic variation in a worldwide sample of modern human populations. Our analyses reveal that not all traits are equally well-suited for reconstructing population affinities. Whereas some traits largely reflect neutral variation and therefore evolved primarily as a result of genetic drift, others can be linked to nonstochastic processes such as natural selection or hominin admixture. We also demonstrate that reconstructions of population affinity based on many traits are not necessarily more reliable than those based on only a few traits. Importantly, we find a set of highly diagnostic trait combinations that preserve neutral genetic signals best (up to x∼r = 0.580; 95% r range = 0.293 to 0.758; P = 0.001). We propose that these trait combinations should be prioritized in future research, as they allow for more accurate inferences about past human population dynamics when using dental morphology as a proxy for DNA.


Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


2020 ◽  
Vol 125 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Silvia Matesanz ◽  
Marina Ramos-Muñoz ◽  
Mario Blanco-Sánchez ◽  
Adrián Escudero

Abstract Background and Aims Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. Methods We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. Key Results In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. Conclusions Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.


2019 ◽  
Vol 191 (1) ◽  
pp. 128-141 ◽  
Author(s):  
Carolina L Pometti ◽  
Cecilia F Bessega ◽  
Ana M Cialdella ◽  
Mauricio Ewens ◽  
Beatriz O Saidman ◽  
...  

Abstract Economically and ecologically important quantitative traits of Acacia aroma are related to life history and the size and shape of fruits and leaves. Substantial variation is observed for these traits in natural populations, suggesting a possible genetic basis that could be useful for selection programmes. Our objective was to detect signals of selection on 12 phenotypic traits in 170 individuals belonging to seven populations of A. aroma in the Chaco Region of Argentina. Phenotypic traits were compared with molecular markers assessed in the same populations. Here, we search for signatures of natural selection by comparing quantitative trait variation to neutral genetic variation through the PST–FST test. We further test for differences among populations for the 12 phenotypic traits, an association of phenotypic variation with environmental variables and geographical distance, and we compare the power of discrimination between the phenotypic and AFLP datasets. The PST–FST test suggested directional selection for tree height and stabilizing selection for the remaining traits. Analyses of variance showed significant differentiation for eight phenotypic traits. These results suggest selecting among provenances as a management strategy to improve tree height (which showed divergent selection), whereas significant genetic gain for the other traits might be obtained by selection within provenances.


Sign in / Sign up

Export Citation Format

Share Document