A patient with autoimmune hepatitis type I, Addison's disease, atrophic thyroiditis, atrophic gastritis, exocrine pancreatic insufficiency, and heterozygous alpha1-antitrypsin deficiency

2002 ◽  
Vol 97 (4) ◽  
pp. 1050-1052
Author(s):  
C. Bergwitz ◽  
G. Brabant ◽  
C. Trautwein ◽  
M.P. Manns
2008 ◽  
Vol 158 (5) ◽  
pp. 705-709 ◽  
Author(s):  
Ng'weina F. Magitta ◽  
Mikuláš Pura ◽  
Anette S Bøe Wolff ◽  
Peter Vanuga ◽  
Anthony Meager ◽  
...  

BackgroundAutoimmune polyendocrine syndrome type I (APS I) is a monogenic disease affecting endocrine glands and other organs due to mutations of the autoimmune regulator (AIRE) gene. There is a wide variability in clinical phenotypes in patients with APS I, which makes the diagnosis a challenge.ObjectiveTo screen for APS I among Slovakian patients with sporadic Addison's disease and clinical features that raised the suspicion of APS I.MethodsAll 14 exons and exon–intron boundaries of the AIRE gene were sequenced. In addition, autoantibodies specific for Addison's disease and polyendocrine syndromes were assayed.ResultsUsing clinical criteria we identified four patients with APS I in three families. Two patients had a novel missense mutation in exon 2 (c.274C>T, p.R92W) and either the Finnish major mutation (c.769C>T) or the common 13 bp deletion (c.967–979del13bp). APS I was diagnosed in a brother of the latter after his death due to an adrenal crisis. A fourth patient had primary adrenal failure and hypoparathyroidism without AIRE mutations or APS-I specific autoantibodies.ConclusionsFour patients with APS I were found in a Slovakian cohort of Addison patients, although the lack of detectable AIRE mutations and APS I-specific autoantibodies raises uncertainty regarding the pathogenesis in one of the patients. This study demonstrates the merits of screening patients with phenotypic features or autoantibody findings that could indicate APS I, even in adult patients. It is necessary to identify APS I patients in order to provide appropriate treatment and follow-up of the various components of APS I.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Matteo Piciucchi ◽  
Gabriele Capurso ◽  
Livia Archibugi ◽  
Martina Maria Delle Fave ◽  
Marina Capasso ◽  
...  

Pancreas is a doubled-entity organ, with both an exocrine and an endocrine component, reciprocally interacting in a composed system whose function is relevant for digestion, absorption, and homeostasis of nutrients. Thus, it is not surprising that disorders of the exocrine pancreas also affect the endocrine system and vice versa. It is well-known that patients with chronic pancreatitis develop a peculiar form of diabetes (type III), caused by destruction and fibrotic injury of islet cells. However, less is known on the influence of diabetes on pancreatic exocrine function. Pancreatic exocrine insufficiency (PEI) has been reported to be common in diabetics, with a prevalence widely ranging, in different studies, in both type I (25–74%) and type II (28–54%) diabetes. A long disease duration, high insulin requirement, and poor glycemic control seem to be risk factors for PEI occurrence. The impact of pancreatic exocrine replacement therapy on glycemic, insulin, and incretins profiles has not been fully elucidated. The present paper is aimed at reviewing published studies investigating the prevalence of PEI in diabetic patients and factors associated with its occurrence.


2000 ◽  
Vol 85 (1) ◽  
pp. 460-463
Author(s):  
Annika Söderbergh ◽  
Fredrik Rorsman ◽  
Maria Halonen ◽  
Olov Ekwall ◽  
Petra Björses ◽  
...  

Autoantibodies against aromatic l-amino acid decarboxylase (AADC) are present in about 50 percent of sera from patients with autoimmune polyendocrine syndrome type I (APS I) but absent in sera from patients with different organ-specific autoimmune diseases, such as insulin-dependent diabetes mellitus, Hashimoto’s thyroiditis, and Graves’ disease. AADC is expressed in the pancreatic β-cells, the liver, and the nervous system; and the presence of AADC antibodies has been shown to correlate to hepatitis and vitiligo in APS I patients. Among 101 investigated patients with autoimmune Addison’s disease, 15 had high titers of AADC antibodies. According to the clinical characteristics of these patients, only 3 had APS I. The remaining 12 had either isolated Addison’s disease or associated diabetes mellitus, hypothyroidism, vitiligo, alopecia, gonadal failure, and pernicious anemia. Autoantibodies against 21-hydroxylase were present in 9 of 12, whereas autoantibodies against side-chain cleavage enzyme and 17α-hydroxylase were present in 3 of 12. Two patients had only autoantibodies against AADC. DNA was available from 3 of these 12 patients. One of the patients, a woman with Addison’s disease, autoimmune thyroiditis, and premature menopause was heterozygous for a point mutation (G1021A, Val301Met) in the first plant homeodomain zinc finger domain of the autoimmune regulator (AIRE) gene. The presence of AADC autoantibodies identifies patients with APS I and a subgroup of Addison patients who may have a milder atypical form of APS I or represent a distinct entity. Measurement of autoantibodies against AADC should be included in the evaluation of Addison’s disease.


2002 ◽  
pp. 519-522 ◽  
Author(s):  
AS Boe ◽  
PM Knappskog ◽  
AG Myhre ◽  
JI Sorheim ◽  
ES Husebye

OBJECTIVE: To investigate whether patients with Addison's disease and polyendocrine syndromes have undiagnosed autoimmune polyendocrine syndrome type I (APS I). MATERIALS AND METHODS: Forty patients with clinical manifestations resembling APS I and with autoantibodies typical of this condition were screened for Norwegian autoimmune regulator (AIRE) gene mutations. RESULTS: A 30-year old man who had developed Addison' s disease at the age of 12, but had no other components of APS I, was homozygous for the 1094-1106 deletion mutation in exon 8 of the AIRE gene, the most common mutation found in Norway. CONCLUSIONS: APS I patients with milder and atypical phenotypes are difficult to diagnose on clinical grounds. Autoantibody analysis and mutational analysis of AIRE may therefore be helpful modalities for identifying these individuals.


2020 ◽  
Vol 182 (5) ◽  
pp. 473-480 ◽  
Author(s):  
Jakob Skov ◽  
Daniel Eriksson ◽  
Ralf Kuja-Halkola ◽  
Jonas Höijer ◽  
Soffia Gudbjörnsdottir ◽  
...  

Objective Co-aggregation of autoimmune diseases is common, suggesting partly shared etiologies. Genetic factors are believed to be important, but objective measures of environmental vs heritable influences on co-aggregation are absent. With a novel approach to twin studies, we aimed at estimating heritability and genetic overlap in seven organ-specific autoimmune diseases. Design Prospective twin cohort study. Methods We used a cohort of 110 814 twins to examine co-aggregation and heritability of Hashimoto’s thyroiditis, atrophic gastritis, celiac disease, Graves’ disease, type 1 diabetes, vitiligo and Addison’s disease. Hazard ratios (HR) were calculated for twins developing the same or different disease as compared to their co-twin. The differences between monozygotic and dizygotic twin pairs were used to estimate the genetic influence on co-aggregation. Heritability for individual disorders was calculated using structural equational modeling adjusting for censoring and truncation of data. Results Co-aggregation was more pronounced in monozygotic twins (median HR: 3.2, range: 2.2–9.2) than in dizygotic twins (median HR: 2.4, range: 1.1–10.0). Heritability was moderate for atrophic gastritis (0.38, 95% CI: 0.23–0.53) but high for all other diseases, ranging from 0.60 (95% CI: 0.49–0.71) for Graves’ disease to 0.97 (95% CI: 0.91–1.00) for Addison’s disease. Conclusions Overall, co-aggregation was more pronounced in monozygotic than in dizygotic twins, suggesting that disease overlap is largely attributable to genetic factors. Co-aggregation was common, and twins faced up to a ten-fold risk of developing diseases not present in their co-twin. Our results validate and refine previous heritability estimates based on smaller twin cohorts.


2019 ◽  
pp. 124-130
Author(s):  
I. N. Zakharova ◽  
N. G. Sugyan

Making sure that the child is absorbing properly the main nutrients such as proteins, fats, carbohydrates, and vitamins, macro- and micronutrients is a key influencer when it comes to the harmonious growth and development. In infants, triglycerides digestion starts in the stomach, where three lipases – human milk, gastric and lingual lipases – split triglycerides. The participation of breast milk lipase stimulated by bile salts in the duodenum in splitting fats is an important feature of digestion in breastfed babies. The absorption of fatty acids differs depending on the length of the carbon chain and the location of the fatty acid in the glycerol molecule. Short-chain and medium-chain fatty acids, as well as glycerine, choline are hydrophilic compounds, which are absorbed without pancreatic lipase and bile acids, directly into the blood, bypassing the lymphatic system. The specific configuration of human milk triglycerides improves the absorption of fatty acids. In situations where lipids digestion or absorption appears impaired, one may talk of steatorrhea. If young children have type I steatorrhea (the presence of neutral fat in stool), it is first required to exclude absolute exocrine pancreatic insufficiency: cystic fibrosis, Shwachman-Diamond syndrome, Pearson syndrome, isolated lipase deficiency (Sheldon – Ray syndrome), etc. Type II steatorrhea (excretion of fatty acids in stool) is not a specific symptom of certain diseases, but is often observed in the small intestine pathology.


Sign in / Sign up

Export Citation Format

Share Document