scholarly journals Correlation between cell-surface hydrophobicity ofCandida albicansand adhesion to buccal epithelial cells

1992 ◽  
Vol 99 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Beyza Ener ◽  
L. Julia Douglas
Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2418 ◽  
Author(s):  
Luanda Souza ◽  
Walicyranison Silva-Rocha ◽  
Magda Ferreira ◽  
Luiz Soares ◽  
Terezinha Svidzinski ◽  
...  

This study evaluated the influence of the extract of Eugenia uniflora in adhesion to human buccal epithelial cells (HBEC) biofilm formation and cell surface hydrophobicity (CSH) of Candida spp. isolated from the oral cavity of kidney transplant patients. To evaluate virulence attributes in vitro, nine yeasts were grown in the presence and absence of 1000 μg/mL of the extract. Adhesion was quantified using the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilm formation was evaluated using two methodologies: XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and crystal violet assay, and further analyzed by electronic scan microscopy. CSH was quantified with the microbial adhesion to hydrocarbons test. We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC and CSH for both Candida albicans and non-Candida albicans Candida species. We also observed a statistically significant reduced ability to form biofilms in biofilm-producing strains using both methods of quantification. However, two highly biofilm-producing strains of Candida tropicalis had a very large reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp. and may be possibly applied in the future as a novel antifungal agent.


2009 ◽  
Vol 75 (20) ◽  
pp. 6616-6618 ◽  
Author(s):  
Sandrine Auger ◽  
Nalini Ramarao ◽  
Christine Faille ◽  
Agnès Fouet ◽  
Stéphane Aymerich ◽  
...  

ABSTRACT Biofilm formation by 102 Bacillus cereus and B. thuringiensis strains was determined. Strains isolated from soil or involved in digestive tract infections were efficient biofilm formers, whereas strains isolated from other diseases were poor biofilm formers. Cell surface hydrophobicity, the presence of an S layer, and adhesion to epithelial cells were also examined.


2012 ◽  
Vol 78 (12) ◽  
pp. 4248-4255 ◽  
Author(s):  
Marlie Botha ◽  
Marelize Botes ◽  
Ben Loos ◽  
Carine Smith ◽  
Leon M. T. Dicks

ABSTRACTLactobacillus equigenerosistrain Le1, a natural inhabitant of the equine gastrointestinal tract, survived pH 3.0 and incubation in the presence of 1.5% (wt/vol) bile salts for at least 2 h. Strain Le1 showed 8% cell surface hydrophobicity, 60% auto-aggregation, and 47% coaggregation withClostridium difficileC6. Only 1% of the cells adhered to viable buccal epithelial cells and invaded the cells within 20 min after contact. Preincubation of strain Le1 in a buffer containing pronase prevented adhesion to viable epithelial cells. Preincubation in a pepsin buffer delayed invasion from 20 min to 1 h. Strain Le1 did not adhere to nonviable epithelial cells. Administration ofL. equigenerosiLe1 (1 × 109CFU per 50 kg body weight) to healthy horses did not increase white blood cell numbers. Differential white blood cell counts and aspartate aminotransferase levels remained constant. Glucose, lactate, cholesterol, and urea levels remained constant during administration withL. equigenerosiLe1 but decreased during the week after administration.


2008 ◽  
Vol 50 (4) ◽  
pp. 203-207 ◽  
Author(s):  
Ângela Maria Mendes Araújo ◽  
Ivi Cristina Menezes de Oliveira ◽  
Marcos Corrêa de Mattos ◽  
Leslie C. Benchetrit

The minimum inhibitory concentration and post-antibiotic effects of an antimicrobial agent are parameters to be taken into consideration when determining its dosage schedules. The in vitro post-antibiotic effects on cell surface hydrophobicity and bacterial adherence were examined in one strain of group B streptococci. Exposure of the microorganism for 2 h at 37 °C to 1 x MIC of penicillin induced a PAE of 1.1 h. The cell surface charge of the Streptococcus was altered significantly during the post-antibiotic phase as shown by its ability to bind to xylene: hydrophobicity was decreased. Bacterial adherence to human buccal epithelial cells was also reduced. The results of the present investigation indicate that studies designed to determine therapeutic regimens should evaluate the clinical significance of aspects of bacterial physiology during the post-antibiotic period.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


Sign in / Sign up

Export Citation Format

Share Document