human epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

644
(FIVE YEARS 38)

H-INDEX

63
(FIVE YEARS 3)

Author(s):  
Takashi Kojima ◽  
Yuma Shindo ◽  
Takumi Konno ◽  
Yuki Kodera ◽  
Wataru Arai ◽  
...  

Author(s):  
Shantal Lizbeth Baltierra‐Uribe ◽  
Alejandra Montañez‐Barragán ◽  
Héctor Romero‐Ramírez ◽  
Ksenia Klimov‐Kravtchenko ◽  
Karla Ivette Martínez‐Pedro ◽  
...  

2021 ◽  
Author(s):  
Morgan LeRoux-Bourdieu ◽  
Daniela Harry ◽  
Patrick Meraldi

Centrioles are central structural elements of centrosomes and cilia. They originate as daughter centrioles from existing centrioles in S-phase and reach their full functionality with the formation of distal and subdistal appendages two mitoses later. Current models postulate that the centriolar protein centrobin acts as placeholder for distal appendage proteins that must be removed to complete distal appendage formation. Here, we investigated in non-transformed human epithelial cells the mechanisms controlling centrobin removal and its effect on distal appendage formation. We demonstrate that centrobin is removed from older centrioles due to a higher affinity for the newly born daughter centrioles, under the control of the centrosomal kinase Plk1. Centrobin removal also depends on the presence of subdistal appendage proteins on the oldest centriole. It is, however, not required for distal appendage formation even though this process is equally dependent on Plk1. We conclude that during centriole maturation, Plk1 kinase regulates centrobin removal and distal appendage formation via separate pathways.


2021 ◽  
pp. 105122
Author(s):  
Thuc Nguyen Dan Do ◽  
Kim Donckers ◽  
Laura Vangeel ◽  
Arnab K. Chatterjee ◽  
Philippe A. Gallay ◽  
...  

2021 ◽  
Author(s):  
Mihaela Anca Serbanescu

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a gastrointestinal pathogen which causes hemorrhagic colitis and can lead to neurological damage, acute kidney failure (hemolytic uremic syndrome and vascular lesions. During intestinal colonization EHEC is exposed to a variety of stresses including bile salts (BS) in the small intestine and short chain fatty acids (SCFA) in the large intestine; little is known about how these stresses affect this pathogen's virulence properties. The goal of this study was to investigate the impact of exposure of E. coli O157:H7 to physiologically relevant concentrations of BS and SCFA alone and in mixtures on bacterial survival, verotoxin production and adhesion to human epithelial cells. The results indicated that BS treatments significantly enhanced several virulence properties including survival and adhesion to human epthelial cell lines including colonic epithelial cells. Verotoxin production was not affected by any of the BS treatments. Bacterial pretreatment with erythromycin at a sub-minimal inhibitory concentration eliminated the adhesion enhancement after BS treatment, suggesting that protein synthesis was required for enhanced adhesion of BS treated organisms. Using the isogenci mutant of the known adhesions, intimin and iha it was established that there was no role for intimin or iha in the BS-induced adhesion enhancement. SCFA treatments reduced bacterial viability but significantly enhanced both adhesion to human epithelial cells and verotoxin production. The results of this research indicate that ingestion stresses such as BS and SCFA, which are part of the host's natural chemical assault on foreign organisms, may actually enhance the viulence properties of this pathogen and contribute to, rather than, prevent infection. Furthermore, they suggest that this pathogen may use these ingestion stresses to cue the expression of numerous virulence factors for successful infection of local microenvironments.


2021 ◽  
Author(s):  
Mihaela Anca Serbanescu

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a gastrointestinal pathogen which causes hemorrhagic colitis and can lead to neurological damage, acute kidney failure (hemolytic uremic syndrome and vascular lesions. During intestinal colonization EHEC is exposed to a variety of stresses including bile salts (BS) in the small intestine and short chain fatty acids (SCFA) in the large intestine; little is known about how these stresses affect this pathogen's virulence properties. The goal of this study was to investigate the impact of exposure of E. coli O157:H7 to physiologically relevant concentrations of BS and SCFA alone and in mixtures on bacterial survival, verotoxin production and adhesion to human epithelial cells. The results indicated that BS treatments significantly enhanced several virulence properties including survival and adhesion to human epthelial cell lines including colonic epithelial cells. Verotoxin production was not affected by any of the BS treatments. Bacterial pretreatment with erythromycin at a sub-minimal inhibitory concentration eliminated the adhesion enhancement after BS treatment, suggesting that protein synthesis was required for enhanced adhesion of BS treated organisms. Using the isogenci mutant of the known adhesions, intimin and iha it was established that there was no role for intimin or iha in the BS-induced adhesion enhancement. SCFA treatments reduced bacterial viability but significantly enhanced both adhesion to human epithelial cells and verotoxin production. The results of this research indicate that ingestion stresses such as BS and SCFA, which are part of the host's natural chemical assault on foreign organisms, may actually enhance the viulence properties of this pathogen and contribute to, rather than, prevent infection. Furthermore, they suggest that this pathogen may use these ingestion stresses to cue the expression of numerous virulence factors for successful infection of local microenvironments.


2021 ◽  
Author(s):  
Changhai (Kevin) Ji

This thesis studied the cytotoxicity of mercuric chloride on human epihelial cells. The three detection techniques were developed to monitor the cytotoxicity of soluble mercuric chloride to human health. Both increased concentration and exposure time resulted in increased DNA damage and cell death. At lower levels death occurred by a mixture of apoptosis and necrosis, while at higher levels cell death occurred primarily by necrosis. This is the first study to demonstrate a deleterious effect of soluble mercuric chloride on human epithelial cells, although mercury has long been known as nephrotoxic and neurotoxic.


2021 ◽  
Author(s):  
Changhai (Kevin) Ji

This thesis studied the cytotoxicity of mercuric chloride on human epihelial cells. The three detection techniques were developed to monitor the cytotoxicity of soluble mercuric chloride to human health. Both increased concentration and exposure time resulted in increased DNA damage and cell death. At lower levels death occurred by a mixture of apoptosis and necrosis, while at higher levels cell death occurred primarily by necrosis. This is the first study to demonstrate a deleterious effect of soluble mercuric chloride on human epithelial cells, although mercury has long been known as nephrotoxic and neurotoxic.


Sign in / Sign up

Export Citation Format

Share Document