Bacterial Adherence
Recently Published Documents


TOTAL DOCUMENTS

502
(FIVE YEARS 56)

H-INDEX

57
(FIVE YEARS 7)

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4892
Author(s):  
Vlad Cozma ◽  
Irina Rosca ◽  
Luminita Radulescu ◽  
Cristian Martu ◽  
Valentin Nastasa ◽  
...  

Within this study, new materials were synthesized and characterized based on polysiloxane modified with different ratios of N-acetyl-l-cysteine (NAC) and crosslinked via UV-assisted thiol-ene addition, in order to obtain efficient membranes able to resist bacterial adherence and biofilm formation. These membranes were subjected to in vitro testing for microbial adherence against S. pneumoniae using standardized tests. WISTAR rats were implanted for 4 weeks with crosslinked siloxane samples without and with NAC. A set of physical characterization methods was employed to assess the chemical structure and morphological aspects of the new synthetized materials before and after contact with the microbiological medium.


Cureus ◽  
2021 ◽  
Author(s):  
Joseph E Massaglia ◽  
Cory Lebowitz ◽  
Keith Fitzgerald ◽  
Noreen J Hickok ◽  
Pedro Beredjiklian ◽  
...  
Keyword(s):  

Author(s):  
Edgar González-Villalobos ◽  
Rosa María Ribas-Aparicio ◽  
Gerardo Erbey Rodea Montealegre ◽  
Laura Belmont-Monroy ◽  
Yerisaidy Ortega-García ◽  
...  

Abstract Urinary tract infections (UTIs) are mainly caused by uropathogenic Escherichia coli (UPEC), whose impact can be exacerbated by multidrug-resistant (MDR) strains. Effective control strategies are, therefore, urgently needed. Among them, phage therapy represents a suitable alternative. Here, we describe the isolation and characterization of novel phages from wastewater samples, as well as their lytic activity against biofilm and adherence of UPEC to HEp-2 cells. The results demonstrated that phage vB_EcoM-phiEc1 (ϕEc1) belongs to Myoviridae family, whereas vB_EcoS-phiEc3 (ϕEc3) and vB_EcoS-phiEc4 (ϕEc4) belong to Siphoviridae family. Phages showed lytic activity against UPEC and gut commensal strains. Phage ϕEc1 lysed UPEC serogroups, whereas phages ϕEc3 and ϕEc4 lysed only UTI strains with higher prevalence toward the O25 serogroup. Moreover, phages ϕEc1 and ϕEc3 decreased both biofilm formation and adherence, whereas ϕEc4 was able to decrease adherence but not biofilm formation. In conclusion, these novel phages showed the ability to decrease biofilm and bacterial adherence, making them promising candidates for effective adjuvant treatment against UTIs caused by MDR UPEC strains. Key points Phage with lytic activity against MDR UPEC strains were isolated and characterized under in vitro conditions. A novel method was proposed to evaluate phage activity against bacterial adherence in HEp-2 cell.. Phages represent a suitable strategy to control infections caused by MDR bacteria.


Author(s):  
El-shama Q. A. Nwoko ◽  
Iruka N. Okeke

Autoaggregation, adherence between identical bacterial cells, is important for colonization, kin and kind recognition, and survival of bacteria. It is directly mediated by specific interactions between proteins or organelles on the surfaces of interacting cells or indirectly by the presence of secreted macromolecules such as eDNA and exopolysaccharides. Some autoaggregation effectors are self-associating and present interesting paradigms for protein interaction. Autoaggregation can be beneficial or deleterious at specific times and niches. It is, therefore, typically regulated through transcriptional or post-transcriptional mechanisms or epigenetically by phase variation. Autoaggregation can contribute to bacterial adherence, biofilm formation or other higher-level functions. However, autoaggregation is only required for these phenotypes in some bacteria. Thus, autoaggregation should be detected, studied and measured independently using both qualitative and quantitative in vitro and ex vivo methods. If better understood, autoaggregation holds the potential for the discovery of new therapeutic targets that could be cost-effectively exploited.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 751
Author(s):  
Louise Carson ◽  
Ruth Merkatz ◽  
Elena Martinelli ◽  
Peter Boyd ◽  
Bruce Variano ◽  
...  

The diversity and dynamics of the microbial species populating the human vagina are increasingly understood to play a pivotal role in vaginal health. However, our knowledge about the potential interactions between the vaginal microbiota and vaginally administered drug delivery systems is still rather limited. Several drug-releasing vaginal ring products are currently marketed for hormonal contraception and estrogen replacement therapy, and many others are in preclinical and clinical development for these and other clinical indications. As with all implantable polymeric devices, drug-releasing vaginal rings are subject to surface bacterial adherence and biofilm formation, mostly associated with endogenous microorganisms present in the vagina. Despite more than 50 years since the vaginal ring concept was first described, there has been only limited study and reporting around bacterial adherence and biofilm formation on rings. With increasing interest in the vaginal microbiome and vaginal ring technology, this timely review article provides an overview of: (i) the vaginal microbiota, (ii) biofilm formation in the human vagina and its potential role in vaginal dysbiosis, (iii) mechanistic aspects of biofilm formation on polymeric surfaces, (iv) polymeric materials used in the manufacture of vaginal rings, (v) surface morphology characteristics of rings, (vi) biomass accumulation and biofilm formation on vaginal rings, and (vii) regulatory considerations.


Author(s):  
Sara Ghavamian ◽  
Iain D. Hay ◽  
Ruhollah Habibi ◽  
Trevor Lithgow ◽  
Victor J. Cadarso

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengpeng Xia ◽  
Yunping Wu ◽  
Siqi Lian ◽  
Guomei Quan ◽  
Yiting Wang ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC) F4ac is a major constraint to the development of the pig industry, which is causing newborn and post-weaning piglets diarrhea. Previous studies proved that FaeG is the major fimbrial subunit of F4ac E. coli and efficient for bacterial adherence and receptor recognition. Here we show that the faeG deletion attenuates both the clinical symptoms of F4ac infection and the F4ac-induced intestinal mucosal damage in piglets. Antibody microarray analysis and the detection of mRNA expression using porcine neonatal jejunal IPEC-J2 cells also determined that the absence of FaeG subunit alleviated the F4ac promoted apoptosis in the intestinal epithelial cells. Thus, targeted depletion of FaeG is still beneficial for the prevention or treatment of F4ac infection.


2021 ◽  
Author(s):  
Maria AC de Oliveira ◽  
Mariana R da C Vegian ◽  
Fernanda L Brighenti ◽  
Marcos J Salvador ◽  
Cristiane Y Koga-Ito

Aim: The inhibitory and antibiofilm effects of Thymus vulgaris (EOTv) and Hyptis spicigera essential oils (EOHs) on cariogenic microorganisms were evaluated. Materials & methods: The chemical characterization of EOTv was performed by gas chromatography/mass spectrometry. Streptococcus mutans, Streptococcus gordonii, Streptococcus sanguinis, Streptococcus mitis, Streptococcus sobrinus, Lactobacillus acidophilus and Actinomyces naeslundii were used for agar diffusion assays and determination of minimal inhibitory and minimal bactericide concentrations. In addition, 20 streptococci and lactobacilli clinical isolates were also tested. The effects of essential oil on microbial initial biofilm formation and on preformed microcosm biofilm formed from human saliva were studied. Results & conclusion: Both essential oils had inhibitory effects on the cariogenic species and reduced the bacterial adherence to dental enamel. Essential oils were able to disrupt preformed microcosm biofilms. Thymus vulgaris and Hyptis spicigera essential oils have potential to be used in the development of formulations to the control of cariogenic biofilms.


Sign in / Sign up

Export Citation Format

Share Document