Molecular characterization of two mutations in platelet glycoprotein (GP) Ibα in two Finnish Bernard-Soulier syndrome families

2009 ◽  
Vol 62 (3) ◽  
pp. 160-168 ◽  
Author(s):  
S. Koskela ◽  
J. Partanen ◽  
T. T. Salmi ◽  
R. Kekomäki
Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2339-2344 ◽  
Author(s):  
Kazunobu Kato ◽  
Constantino Martinez ◽  
Susan Russell ◽  
Paquita Nurden ◽  
Alan Nurden ◽  
...  

Abstract Here we report the characterization of a mouse model of the Bernard-Soulier syndrome generated by a targeted disruption of the gene encoding the glycoprotein (GP) Ibβ subunit of the GP Ib-IX complex. Similar to a Bernard-Soulier model generated by disruption of the mouse GP Ibα subunit, GP IbβNull mice display macrothrombocytopenia and a severe bleeding phenotype. When examined by transmission electron microscopy, the large platelets produced by a GP IbβNull genotype revealed α-granules with increased size as compared with the α-granules from control mouse platelets. Data are presented linking the overexpression of a septin protein, SEPT5, to the presence of larger α-granules in the GP IbβNull platelet. The SEPT5 gene resides approximately 250 nucleotides 5′ to the GP Ibβ gene and has been associated with modulating exocytosis from neurons and platelets as part of a presynaptic protein complex. Fusion mRNA transcripts present in megakaryocytes can contain both the SEPT5 and GP Ibβ coding sequences as a result in an imperfect polyadenylation signal within the 3′ end of both the human and mouse SEPT5 genes. We observed a 2- to 3-fold increase in SEPT5 protein levels in platelets from GP IbβNull mice. These results implicate SEPT5 levels in the maintenance of normal α-granule size and may explain the variant granules associated with human GP Ibβ mutations and the Bernard-Soulier syndrome.


2006 ◽  
Vol 175 (4S) ◽  
pp. 467-467
Author(s):  
Victor K. Lin ◽  
Shih-Ya Wang ◽  
Claus G. Roehrbom

2012 ◽  
Vol 224 (03) ◽  
Author(s):  
A Streltsov ◽  
S Emmrich ◽  
F Engeland ◽  
JH Klusmann

2018 ◽  
Author(s):  
MY Deng ◽  
D Sturm ◽  
E Pfaff ◽  
GP Balasubrama ◽  
J Schittenhelm ◽  
...  

2006 ◽  
Vol 37 (06) ◽  
Author(s):  
L Schlotawa ◽  
T Dierks ◽  
K von Figura ◽  
J Gärtner

2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


Sign in / Sign up

Export Citation Format

Share Document