Competition and facilitation between tree species change with stand development

Oikos ◽  
2011 ◽  
Vol 120 (11) ◽  
pp. 1683-1695 ◽  
Author(s):  
Xavier Cavard ◽  
Yves Bergeron ◽  
Han Y. H. Chen ◽  
David Paré ◽  
Jérôme Laganière ◽  
...  
2017 ◽  
Vol 47 (8) ◽  
pp. 997-1009 ◽  
Author(s):  
Katherine F. Crowley ◽  
Gary M. Lovett

As tree species composition in forests of the northeastern United States changes due to invasive forest pests, climate change, or other stressors, the extent to which forests will retain or release N from atmospheric deposition remains uncertain. We used a species-specific, dynamic forest ecosystem model (Spe-CN) to investigate how nitrate (NO3–) leaching may vary among stands dominated by different species, receiving varied atmospheric N inputs, or undergoing species change due to an invasive forest pest (emerald ash borer; EAB). In model simulations, NO3– leaching varied widely among stands dominated by 12 northeastern North American tree species. Nitrate leaching increased with N deposition or forest age, generally with greater magnitude for deciduous (except red oak) than coniferous species. Species with lowest baseline leaching rates (e.g., red spruce, eastern hemlock, red oak) showed threshold responses to N deposition. EAB effects on leaching depended on the species replacing white ash: after 100 years, predicted leaching increased 73% if sugar maple replaced ash but decreased 55% if red oak replaced ash. This analysis suggests that the effects of tree species change on NO3– leaching over time may be large and variable and should be incorporated into predictions of effects of N deposition on leaching from forested landscapes.


2020 ◽  
Vol 66 (3) ◽  
pp. 361-370
Author(s):  
Xiongqing Zhang ◽  
Quang V Cao ◽  
Hanchen Wang ◽  
Aiguo Duan ◽  
Jianguo Zhang

Abstract The self-thinning rule has played a critical role in controlling stand stocking and modeling stand development in forest stands. Chinese fir (Cunninghamia lanceolata) is a native and fast-growing tree species used for timber production and is widely grown in southern China. Effective management of this important tree species requires accurate and reasonable predictions of stand growth and survival. Remeasured data from 48 plots distributed in Fujian, Jiangxi, Guangxi, and Sichuan provinces were used to develop models to predict stand survival and basal area based on the self-thinning trajectories. These trajectories were constructed using a self-thinning slope of –1.605, as suggested by Reineke (1933) (Method 1), and the slopes estimated either from two groups of sites (Method 2) or from climate variables (Method 3). Results indicated that the stand growth and survival models using Method 3 performed best, followed by Method 2 and Method 1. In addition, stand growth and survival curves predicted from Method 3 were more similar in shape to those from the observed values, as compared with Method 1. Overall, the models based on the self-thinning lines using climate-sensitive slopes provided reasonable predictions of the stand development dynamics. Therefore, these results facilitate modeling of the relation between stand growth/survival and self-thinning under climate change.


Pedobiologia ◽  
2003 ◽  
Vol 47 (5-6) ◽  
pp. 772-783 ◽  
Author(s):  
Bart Muys ◽  
Griet Beckers ◽  
Lieven Nachtergale ◽  
Noël Lust ◽  
Roel Merckx ◽  
...  

Ecosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
Author(s):  
O. Janne Kjønaas ◽  
Teresa G. Bárcena ◽  
Gro Hylen ◽  
Jørn‐Frode Nordbakken ◽  
Tonje Økland

1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

Sign in / Sign up

Export Citation Format

Share Document