Effects of mode of oral iron administration on serum ferritin and haemoglobin in infants

2008 ◽  
Vol 97 (8) ◽  
pp. 1055-1060 ◽  
Author(s):  
Magnus Domellf ◽  
Torbjrn Lind ◽  
Bo Lnnerdal ◽  
Lars ke Persson ◽  
Kathryn G Dewey ◽  
...  
2019 ◽  
Vol 6 ◽  
pp. 2333794X1988481
Author(s):  
Katsunaka Mikami ◽  
Hideki Okazawa ◽  
Keitaro Kimoto ◽  
Fumiaki Akama ◽  
Yuichi Onishi ◽  
...  

Toxicology ◽  
2017 ◽  
Vol 392 ◽  
pp. 22-31 ◽  
Author(s):  
Pankaj Kumar ◽  
Tapas Chandra Nag ◽  
Kumar Abhiram Jha ◽  
Sanjay Kumar Dey ◽  
Poorti Kathpalia ◽  
...  

2018 ◽  
Vol 87 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Martin Svoboda ◽  
Karolína Píšťková

Iron deficiency is presently a serious problem in suckling piglets on pig farms. The most often used method of anaemia prevention in piglets is parenteral administration of iron dextran. Oral iron represents an alternative to this method. The goal of this article is to review current knowledge on oral iron administration in suckling piglets. The substances that can be used for this purpose include iron dextran, iron salts, iron chelates, carbonyl iron, an iron polymaltose complex and iron microparticles. The different methods of oral iron administration in piglets are discussed.


Author(s):  
Giulio Giordano ◽  
Mariasanta Napolitano ◽  
Valeria Di Battista ◽  
Alessandro Lucchesi

AbstractIron deficiency anemia is among the most frequent causes of disability. Intravenous iron is the quickest way to correct iron deficiency, bypassing the bottleneck of iron intestinal absorption, the only true mechanism of iron balance regulation in human body. Intravenous iron administration is suggested in patients who are refractory/intolerant to oral iron sulfate. However, the intravenous way of iron administration requires several precautions; as the in-hospital administration requires a resuscitation service, as imposed in Europe by the European Medicine Agency, it is very expensive and negatively affects patient’s perceived quality of life. A new oral iron formulation, Sucrosomial iron, bypassing the normal way of absorption, seems to be cost-effective in correcting iron deficiency anemia at doses higher than those usually effective with other oral iron formulations. In this multicentric randomized study, we analyze the cost-effectiveness of intravenous sodium ferrigluconate vs oral Sucrosomial iron in patients with iron deficiency anemia refractory/intolerant to oral iron sulfate without other interfering factors on iron absorption.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5149-5149
Author(s):  
John Adamson ◽  
Zhu Li ◽  
Paul Miller ◽  
Annamaria Kausz

Abstract Abstract 5149 BACKGROUND Iron deficiency anemia (IDA) is associated with reduced physical functioning, cardiovascular disease, and poor quality of life. The measurement of body iron stores is essential to the management of IDA, and the indices most commonly used to assess iron status are transferrin saturation (TSAT) and serum ferritin. Unfortunately, serum ferritin is not a reliable indicator of iron status, particularly in patients with chronic kidney disease (CKD), because it is an acute phase reactant and may be elevated in patients with iron deficiency in the presence of inflammation. Recent clinical trials have shown that patients with iron indices above a strict definition of iron deficiency (TSAT >15%, serum ferritin >100 ng/mL), do have a significant increase in hemoglobin (Hgb) when treated with iron. These results are consistent with recent changes to the National Cancer Comprehensive Network (NCCN) guidelines, which have expanded the definition of functional iron deficiency (relative iron deficiency) to include a serum ferritin <800 ng/mL; previously, the serum ferritin threshold was <300 ng/mL. Additionally, for patients who meet this expanded definition of functional iron deficiency (TSAT <20%, ferritin <800 ng/mL), it is now recommended that iron replacement therapy be considered in addition to erythropoiesis-stimulating agent (ESA) therapy. Ferumoxytol (Feraheme®) Injection, a novel IV iron therapeutic agent, is indicated for the treatment of IDA in adult patients with CKD. Ferumoxytol is composed of an iron oxide with a unique carbohydrate coating (polyglucose sorbitol carboxymethylether), is isotonic, has a neutral pH, and evidence of lower free iron than other IV irons. Ferumoxytol is administered as two IV injections of 510 mg (17 mL) 3 to 8 days apart for a total cumulative dose of 1.02 g; each IV injection can be administered at a rate up to 1 mL/sec, allowing for administration of a 510 mg dose in less than 1 minute. METHODS Data were combined from 2 identically designed and executed Phase III randomized, active-controlled, open-label studies conducted in 606 patients with CKD stages 1–5 not on dialysis. Patients were randomly assigned in a 3:1 ratio to receive a course of either 1.02 g IV ferumoxytol (n=453) administered as 2 doses of 510 mg each within 5±3 days or 200 mg of oral elemental iron (n=153) daily for 21 days. The main IDA inclusion criteria included a Hgb ≤11.0 g/dL, TSAT ≤30%, and serum ferritin ≤600 ng/mL. The mean baseline Hgb was approximately 10 g/dL, and ESAs were use by approximately 40% of patients. To further evaluate the relationship between baseline markers of iron stores and response to iron therapy, data from these trials were summarized by baseline TSAT and serum ferritin levels. RESULTS Overall, results from these two pooled trials show that ferumoxytol resulted in a statistically significant greater mean increase in Hgb relative to oral iron. When evaluated across the baseline iron indices examined, statistically significant (p<0.05) increases in Hgb at Day 35 were observed following ferumoxytol administration, even for subjects with baseline iron indices above levels traditionally used to define iron deficiency. Additionally, at each level of baseline iron indices, ferumoxytol produced a larger change in Hgb relative to oral iron. These data suggest that patients with CKD not on dialysis with a wide range of iron indices at baseline respond to IV iron therapy with an increase in Hgb. Additionally, ferumoxytol consistently resulted in larger increases in Hgb relative to oral iron across all levels of baseline iron indices examined. Disclosures: Adamson: VA Medical Center MC 111E: Honoraria, Membership on an entity's Board of Directors or advisory committees. Li:AMAG Pharmaceuticals, Inc.: Employment. Miller:AMAG Pharmaceuticals, Inc.: Employment. Kausz:AMAG Pharmaceuticals, Inc.: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3621-3621
Author(s):  
Yasumichi Toki ◽  
Katsuya Ikuta ◽  
Masayo Yamamoto ◽  
Mayumi Hatayama ◽  
Motohiro Shindo ◽  
...  

Abstract Background: Anemia is a significant worldwide health problem, and approximately 30% of world people suffer from anemia, the half of which is iron deficiency (ID). The diagnosis of anemia requires the confirmation of a decrease in hemoglobin (Hb) concentration. For the diagnosis of iron deficiency anemia (IDA), the determinations of serum ferritin and iron related parameters must be necessary even if microcytic hypochromic anemia is confirmed. With recent technological advances, the Hb content of reticulocytes can be quantified by flow cytometry. Reticulocytes exist for 1-2 days in the peripheral blood and its Hb levels might be a good index of ID.There are several markers for the assessment of Hb content in reticulocytes, including reticulocyte Hb equivalent (RET-He) and reticulocyte Hb content (CHr). RET-He, which can be measured in the same sample used for complete blood count tests by the latest automated hematology analyzers, is considered to reflect iron content in reticulocytes. If RET-He is capable of evaluating ID, it must be useful for immediate diagnosis of IDA. Therefore, we evaluated the usefulness of RET-He for determining of ID. Methods: This prospective study was approved by the ethics committee of Asahikawa Medical University (authorization numbers 1356, 1679, and 1356-3). Blood samples were obtained from 211 patients (63 males and 148 females) from 14 to 91 years old. RET-He levels were determined using an automated hematology analyzer (XN-3000® or XE-5000®, Sysmex, Kobe, Japan). Serum iron, total iron binding capacity (TIBC), serum ferritin, and biochemical data were measured using an automated chemical analyzer. Soluble transferrin receptor (sTfR) was measured by an enzyme-linked immunosorbent assay. Anemia was defined as Hb level of <12 g/dL. ID state was defined as serum ferritin level of <12 ng/mL. Patients were classified into four groups which are IDA, ID, control, and anemia without ID groups according to their Hb and serum ferritin levels (Table 1). Laboratory parameters were compared among four groups. The changes of RET-He during oral iron administration were also determined for 21 IDA patients. Results: There were 72 (14 males and 58 females), 28 (12 males and 16 females), 67 (23 males and 44 females), and 44 (14 males and 30 females) patients in the IDA, ID, control, and anemia without ID groups, respectively. As shown in Table 1, The median RET-He levels were 22.3 pg (15.1-35.6 pg), 29.7 pg (19.2-34.9 pg), 34.0 pg (25.9-38.0 pg), and 32.5 pg (19.1-46.3 pg) in the IDA, ID, control, and anemia without ID groups, respectively. Patients in not only IDA but ID groups had significantly lower RET-He levels than those in control group (p < 0.001) while there was no significant difference in RET-He levels between anemia without ID and control. RET-He correlated positively with serum iron (r = 0.654) and transferrin saturation (TSAT) (r = 0.666), and correlated negatively with TIBC (r = -0.617) and sTfR (r = -0.655). There was no correlation between RET-He and serum ferritin when all patients were included in the analysis (r = 0.287); however, analysis of groups according to their iron status revealed a positive correlation between RET-He and serum ferritin in the IDA and ID groups (r = 0.604). The area under the ROC curve (AUC) detecting ID for RET-He was 0.902, whereas AUC for serum iron, TIBC, TSAT, and sTfR were 0.889, 0.879, 0.922 and 0.821, respectively. The cutoff value of RET-He with maximal sensitivity and specificity was 30.9 pg, and the cutoff RET-He value of 28.5 pg had a specificity of >90% (sensitivity, 68%; specificity 91%). Among patients receiving iron treatments, the Hb levels increased in 14 patients, whereas Hb values decreased or did not change in 7 patients. Serum ferritin and RET-He values seemed to change in parallel with changes in Hb levels. Conclusions: In the present study, our data showed the efficacy of RET-He for diagnosis of IDA and the usefulness for monitoring drug iron administration. Because other parameters related to ID such as iron and ferritin should be measured biochemically in serum, it takes a longer time to measure serum iron and ferritin levels when compared with complete blood count tests. We would therefore suggest that measurement of RET-He might be useful to diagnose IDA because its assessment is rapid, fully automated, and can be measured in same sample used for complete blood count test. Disclosures Toki: Sysmex Corporation: Research Funding. Ikuta:Sysmex Corporation: Research Funding. Yamamoto:Sysmex Corporation: Research Funding. Hatayama:Sysmex Corporation: Research Funding. Shindo:Sysmex Corporation: Research Funding. Fujiya:Sysmex Corporation: Research Funding. Okumura:Sysmex Corporation: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document