iron chelates
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Wojciech Szlasa ◽  
Martyna Gachowska ◽  
Karolina Kiszka ◽  
Katarzyna Rakoczy ◽  
Aleksander Kiełbik ◽  
...  

AbstractIron plays a significant role in the metabolism of cancer cells. In comparison with normal cells, neoplastic ones exhibit enhanced vulnerability to iron. Ferric ions target tumor via the ferroptotic death pathway—a process involving the iron-mediated lipid oxidation. Ferric ion occurs in complex forms in the physiological conditions. Apart from iron, ligands are the other factors to affect the biological activity of the iron complexes. In recent decades the role of iron chelates in targeting the growth of the tumor was extensively examined. The ligand may possess a standalone activity to restrict cancer’s growth. However, a wrong choice of the ligand might lead to the enhanced cancer cell’s growth in in vitro studies. The paper aims to review the role of iron complex compounds in the anticancer therapy both in the experimental and clinical applications. The anticancer properties of the iron complex rely both on the stability constant of the complex and the ligand composition. When the stability constant is high, the properties of the drug are unique. However, when the stability constant remains low, both components—ferric ions and ligands, act separately on the cells. In the paper we show how the difference in complex stability implies the action of ligand and ferric ions in the cancer cell. Iron complexation strategy is an interesting attempt to transport the anticancer Fe2+/3+ ions throughout the cell membrane and release it when the pH of the microenvironment changes. Last part of the paper summarizes the results of clinical trials and in vitro studies of novel iron chelates such as: PRLX 93,936, Ferumoxytol, Talactoferrin, DPC, Triapine, VLX600, Tachypyridine, Ciclopiroxamine, Thiosemicarbazone, Deferoxamine and Deferasirox.


2021 ◽  
Vol 13 (SI) ◽  
pp. 149-155
Author(s):  
Murali Subramani ◽  
Jawahar Durairaj ◽  
Chitdeshwari Thiyagarajan ◽  
Jagadesh Muthumani

The present study was aimed to investigate the using iron chelates viz., ferrous glycinate and ferrous citrate for the remediation of iron deficiency in alkaline and calcareous soil. The lab experiment was carried out to study the synthesis of Fe chelates by using organic and amino acid based chelating agents. The Fe chelates were synthesized based on 2:1 molar ratio of chelating agents and metal ions. The synthesized iron chelate was characterized by using Fourier transform infrared spectrophotometer (FT-IR). Finally, the synthesized amino acid and organic acid chelated iron were used to remediate the calcareous soil with black gram as a test crop. Iron content in black gram (above ground mass) tented to fluctuate at different growth stages. The highest shoot iron content of 325, 351 and 347 mg kg-1 at vegetative, flowering and harvest stages were recorded with 1% ferrous glycinate as foliar spraying on 25 and 45 Day after sowing (DAS). The root iron content was also higher in 1% ferrous glycinate as foliar spraying on 25 and 45 DAS. The current investigation affirmed that the utilizing different chelating agents like the ferrous glycinate were powerful than ferrous sulfate, which may build the iron substance and iron take-up of blackgram in various development stages.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1933
Author(s):  
Ewelina Klem-Marciniak ◽  
Marta Huculak-Mączka ◽  
Kinga Marecka ◽  
Krystyna Hoffmann ◽  
Józef Hoffmann

In application conditions, the influence of environmental parameters on used fertilizer chelates and their distribution over time is important. For this purpose, the changes in the content of micronutrient ions and Fe-EDDHA and Fe-EDDHSA chelates in an aqueous medium at different pH values were studied. In the assumed time, changes in the ions content were analyzed using the voltammetry method at pH 3, 5 and 7. The content of isomers and chelate forms was analyzed by ion pair chromatography at pH 3, 5 and 7. These studies allowed us to determine the effect of pH on the stability of iron chelates over time.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 217 ◽  
Author(s):  
Ivana Puglisi ◽  
Sergio Brida ◽  
Vasile Stoleru ◽  
Valentina Torino ◽  
Vincenzo Michele Sellitto ◽  
...  

The strawberry is a low-growing, herbaceous perennial plant, sensitive to iron deficiency. The iron deficiency represents a nutritional disorder, leading to a decreased content of photosynthetic pigments, which determines the yellow color characteristic of chlorotic leaves. Therefore, in calcareous soils, the use of synthetic iron chelate is often mandatory in strawberry cultivation. The employment of novel microorganism-based formulations as alternatives to the use of iron chelates, was evaluated during strawberry cultivation by monitoring the morpho-biometric parameters, chlorophylls, the iron content in leaves and roots, and the Fe chelate reductase activity involved in absorption of iron during the chlorosis event in plants using the strategy I. The experimental design envisaged growing strawberry seedlings on an inert substrate (pumice), irrigated with Hoagland solution iron-free, with a 12 h photoperiod. After 42 days, at the first appearance of chlorosis symptoms, plants were transplanted into a calcareous soil, and after seven days, they were treated, by a single application, with a microorganism-based formulations (MBF), an inoculum (In) of Trichoderma spp. and Streptomyces spp., or Sequestrene (Sq). Strawberry plants were sampled and analyzed at 5, 10, 15, and 20 days from the treatments. The results showed that microorganism-based formulations positively affected the strawberry seedlings, by reducing the chlorosis symptoms, producing comparable effects to the Sequestrene treatment.


2021 ◽  
pp. 291-298
Author(s):  
A. Gentile ◽  
G. Urbinati ◽  
S. Lucioli ◽  
A. Frattarelli ◽  
C. Forni ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2432
Author(s):  
Anna Makarova ◽  
Elena Nikulina ◽  
Tatiana Avdeenkova ◽  
Ksenia Pishaeva

Heavy metals are among the most widespread pollutants in soil. Phytoextraction technology is used to solve the problem of multi-metal-contaminated soil. The efficiency of this process can be increased by introducing various amendments. A soil amendment is any material added to a soil to improve its physical properties, such as water retention, permeability, water infiltration, drainage, aeration, and structure. Some chemical amendments for enhanced phytoextraction, such as amino polycarboxylates chelators, can be hazardous to the environment and perform poorly at pH > 8. The effect of the potassium salt of hydroxyethylidene diphosphonic acid (K2HEDP), plant growth regulators (PGRs), and iron chelate alone and in combination on the phytoextraction by Trifolium repens L. seedlings of Cd, Ni, and Cu was studied in this work. K2HEDP works in a wider pH range. The results of this study confirmed that amino polycarboxylate chelators, with the sodium salt of ethylene diamine tetraacetic acid (Na2EDTA) as an example, have a pronounced negative effect on the growth and development (organ mass) of Trifolium repens L. seedlings. K2HEDP, proposed by the authors instead of Na2EDTA, produced a pronounced positive effect on plant growth and development, which was further enhanced by the use of PGRs and with iron chelates. However, it should be noted that K2HEDP showed significantly lower efficiency in trials on the Trifolium repens L. seedlings. The highest was the efficiency of K2HEDP with PGRs and iron chelates for the phytoextraction of Cd.


2021 ◽  
Vol 296 ◽  
pp. 100418
Author(s):  
James F. Collins
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document