Herb layer response to broadleaf tree species with different leaf litter quality and canopy structure in temperate forests

2009 ◽  
Vol 20 (3) ◽  
pp. 517-526 ◽  
Author(s):  
Monika Wulf ◽  
Tobias Naaf
2012 ◽  
Vol 58 (No. 4) ◽  
pp. 170-180 ◽  
Author(s):  
E. Sayad ◽  
S.M. Hosseini ◽  
V. Hosseini ◽  
M.-H. Salehe-Shooshtari

Soil communities exert strong influences on the processing of organic matter and nutrients. Plantations of trees, especially of nitrogen fixing ones, may affect the soil macrofauna through litter quality and quantity. This study was conducted in a randomized block design with three blocks consisting of Populus euphratica, Eucalyptus camaldulensis, Eucalyptus microtheca, Acacia farnesiana, Acacia salicina, Acacia saligna, Acacia stenophylla and Dalbergia sissoo monoculture plantations that were established in 1992. Soils and soil macrofauna were sampled in November 2006. Leaf litterfall was collected from November 2006 to November 2007 at bi-weekly intervals. Macroinvertebrate abundance and biomass were consistently higher in A. salicina plantations than in the others, whereas they were lowest in E. camaldulensis. Tree species and nitrogen fixing trees significantly influenced the soil macrofauna richness. The results suggest that the earthworm distribution is regulated by leaf litter quality (Ca, C and N) whereas the macrofauna richness is regulated by leaf litter mass, soil organic carbon and leaf litter Mg. Totally, it was revealed that the tree species clearly affected macrofauna whereas nitrogen fixation did not.  


2008 ◽  
Vol 38 (3) ◽  
pp. 528-538 ◽  
Author(s):  
Mathieu Jonard ◽  
Frederic Andre ◽  
Quentin Ponette

This study aimed to evaluate the relative importance of the factors whereby tree species composition can influence leaf litter dynamics. Leaf litter production and chemical composition were measured in pure and mixed stands of oak ( Quercus petraea Liebl.) and beech ( Fagus sylvatica L.). Pure and mixed leaf litter of both species were incubated in each stand type to assess separately the environmental, litter quality, and litter mixture effects on decomposition. To better understand the environmental effects, ground climate was measured in the different stands and the effects of soil water content on decomposition were evaluated using roofs to simulate drought conditions. Although total leaf litter amounts were not affected by stand composition, leaf decomposition varied with litter quality and with the environmental conditions. In the same environment, oak leaf litter disappeared on average 1.7 times faster than beech leaf litter. Decomposition of oak leaves increased significantly in the mixed-species litterbags. In contrast, the overall mass loss of the mixed litter tallied with the mass loss estimated by examining the decomposition of the component litter separately (additive-effect hypothesis). The effects of stand type appeared in the third year of incubation: leaf mass loss of both species was greater in the beech stand. In addition, soil water content affected leaf decomposition: the oak and beach leaf mass losses dropped by 24% and 17%, respectively, in the dry modality.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hunter Stanke ◽  
Andrew O. Finley ◽  
Grant M. Domke ◽  
Aaron S. Weed ◽  
David W. MacFarlane

AbstractChanging forest disturbance regimes and climate are driving accelerated tree mortality across temperate forests. However, it remains unknown if elevated mortality has induced decline of tree populations and the ecological, economic, and social benefits they provide. Here, we develop a standardized forest demographic index and use it to quantify trends in tree population dynamics over the last two decades in the western United States. The rate and pattern of change we observe across species and tree size-distributions is alarming and often undesirable. We observe significant population decline in a majority of species examined, show decline was particularly severe, albeit size-dependent, among subalpine tree species, and provide evidence of widespread shifts in the size-structure of montane forests. Our findings offer a stark warning of changing forest composition and structure across the western US, and suggest that sustained anthropogenic and natural stress will likely result in broad-scale transformation of temperate forests globally.


2012 ◽  
Vol 90 (8) ◽  
pp. 991-998 ◽  
Author(s):  
C.K. Adams ◽  
D. Saenz

Chinese tallow (Triadica sebifera (L.) Small) is an aggressive invasive tree species that can be abundant in parts of its non-native range. This tree species has the capability of producing monocultures, by outcompeting native trees, which can be in or near wetlands that are utilized by breeding amphibians. Existing research suggests that leaf litter from invasive Chinese tallow reduces survival in larval anurans. The purpose of this study was to determine the effects of Chinese tallow leaf litter on anuran eggs. We exposed eggs of the Southern Leopard Frog ( Lithobates sphenocephalus (Cope, 1886)) at various stages of development to different concentrations of Chinese tallow leaf litter to determine survival. Eggs in the earliest stages of development that we exposed to tallow leaf litter died, regardless of concentration; however, some more-developed eggs exposed to tallow leaf litter did hatch. We determined that the greater the concentration of tallow leaf litter, the lower the dissolved oxygen and pH levels we observed. We suggest that changes in these water-quality parameters are the cause of the observed mortality of anuran eggs in our experiments. Eggs exposed to water containing tallow leaf litter with dissolved oxygen <1.59 mg/L and a pH <5.29 did not survive to hatching.


Sign in / Sign up

Export Citation Format

Share Document