scholarly journals Molecular characterization of Osh6p, an oxysterol binding protein homolog in the yeast Saccharomyces cerevisiae

FEBS Journal ◽  
2005 ◽  
Vol 272 (18) ◽  
pp. 4703-4715 ◽  
Author(s):  
Penghua Wang ◽  
Wei Duan ◽  
Alan L. Munn ◽  
Hongyuan Yang
1995 ◽  
Vol 15 (11) ◽  
pp. 6025-6035 ◽  
Author(s):  
Q Xu ◽  
R A Singer ◽  
G C Johnston

The Cdc68 protein is required for the transcription of a variety of genes in the yeast Saccharomyces cerevisiae. In a search for proteins involved in the activity of the Cdc68 protein, we identified four suppressor genes in which mutations reverse the temperature sensitivity caused by the cdc68-1 allele. We report here the molecular characterization of mutations in one suppressor gene, the previously identified SUG1 gene. The Sug1 protein has been implicated in both transcriptional regulation and proteolysis. sug1 suppressor alleles reversed most aspects of the cdc68-1 mutant phenotype but did not suppress the lethality of a cdc68 null allele, indicating that sug1 suppression is by restoration of Cdc68 activity. Our evidence suggests that suppression by sug1 is unlikely to be due to increased stability of mutant Cdc68 protein, despite the observation that Sug1 affected proteolysis of mutant Cdc68. We report here that attenuated Sug1 activity strengthens mutant Cdc68 activity, whereas increased Sug1 activity further inhibits enfeebled Cdc68 activity, suggesting that Sug1 antagonizes the activator function of Cdc68 for transcription. Consistent with this hypothesis, we find that Sug1 represses transcription in vivo.


1984 ◽  
Vol 259 (6) ◽  
pp. 3450-3456
Author(s):  
A Burshell ◽  
P A Stathis ◽  
Y Do ◽  
S C Miller ◽  
D Feldman

Gene ◽  
2008 ◽  
Vol 407 (1-2) ◽  
pp. 12-20 ◽  
Author(s):  
Dong Yan Li ◽  
Hayami Inoue ◽  
Masayuki Takahashi ◽  
Toshio Kojima ◽  
Masakazu Shiraiwa ◽  
...  

2005 ◽  
Vol 280 (13) ◽  
pp. 13203
Author(s):  
Brian V. Geisbrecht ◽  
Dai Zhu ◽  
Kerstin Schulz ◽  
Katja Nau ◽  
James C. Morrell ◽  
...  

1986 ◽  
Vol 6 (2) ◽  
pp. 688-702 ◽  
Author(s):  
J M Ivy ◽  
A J Klar ◽  
J B Hicks

Mating type in the yeast Saccharomyces cerevisiae is determined by the MAT (a or alpha) locus. HML and HMR, which usually contain copies of alpha and a mating type information, respectively, serve as donors in mating type interconversion and are under negative transcriptional control. Four trans-acting SIR (silent information regulator) loci are required for repression of transcription. A defect in any SIR gene results in expression of both HML and HMR. The four SIR genes were isolated from a genomic library by complementation of sir mutations in vivo. DNA blot analysis suggests that the four SIR genes share no sequence homology. RNA blots indicate that SIR2, SIR3, and SIR4 each encode one transcript and that SIR1 encodes two transcripts. Null mutations, made by replacement of the normal genomic allele with deletion-insertion mutations created in the cloned SIR genes, have a Sir- phenotype and are viable. Using the cloned genes, we showed that SIR3 at a high copy number is able to suppress mutations of SIR4. RNA blot analysis suggests that this suppression is not due to transcriptional regulation of SIR3 by SIR4; nor does any SIR4 gene transcriptionally regulate another SIR gene. Interestingly, a truncated SIR4 gene disrupts regulation of the silent mating type loci. We propose that interaction of at least the SIR3 and SIR4 gene products is involved in regulation of the silent mating type genes.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 523-530
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II isozyme (enzyme, ADHII; structural gene, ADH2) of the yeast, Saccharomyces cerevisiae, is under stringent carbon catabolite control. This cytoplasmic isozyme exhibits negligible activity during growth in media containing fermentable carbon sources such as glucose and is maximal during growth on nonfermentable carbon sources. A recessive mutation, adr6-1, and possibly two other alleles at this locus, were selected for their ability to decrease Ty-activated ADH2-6 c expression. The adr6-1 mutation led to decreased ADHII activity in both ADH2-6c and ADH2+ strains, and to decreased levels of ADH2 mRNA. Ty transcription and the expression of two other carbon catabolite regulated enzymes, isocitrate lyase and malate dehydrogenase, were unaffected by the adr6-1 mutation. adr6-1/adr6-1strains were defective for sporulation, indicating that adr6 mutations may have pleiotropic effects. The sporulation defect was not a consequence of decreased ADH activity. Since the ADH2-6c mutation is due to insertion of a 5.6-kb Ty element at the TATAA box, it appears that the ADR6+-dependent ADHII activity required ADH2 sequences 3′ to or including the TATAA box. The ADH2 upstream activating sequence (UAS) was probably not required. The ADR6 locus was unlinked to the ADR1 gene which encodes another trans-acting element required for ADH2 expression.


1987 ◽  
Vol 7 (3) ◽  
pp. 998-1003
Author(s):  
M Altmann ◽  
C Handschin ◽  
H Trachsel

We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.


Sign in / Sign up

Export Citation Format

Share Document