Polyclonal antibody-based ELISA in combination with specific PCR amplification of internal transcribed spacer regions for the detection and quantitation of Lasiodiplodia theobromae, causal agent of gummosis in cashew nut plants

2012 ◽  
Vol 160 (3) ◽  
pp. 217-224 ◽  
Author(s):  
C.R. Muniz ◽  
F.C.O. Freire ◽  
F.M.P. Viana ◽  
J.E. Cardoso ◽  
D. Correia ◽  
...  
HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 783D-783
Author(s):  
Margaret R. Pooler ◽  
John S. Hartung

Xylella fastidiosa is a fastidious gram-negative, xylem-limited leafhopper-transmitted bacterium that has proven to be the causal agent of many economically important horticultural plant diseases, including Pierce's disease of grapevine and citrus variegated chlorosis. Genetic relationships among 11 X. fastidiosa strains isolated from mulberry, almond, ragweed, grape, plum, elm, and citrus were determined using randomized amplified polymorphic DNA (RAPD). Twenty-two 10-base primers amplified a total of 77 discrete polymorphic bands. Phenetic analysis based on a similarity matrix corresponded well with previous reports on RFLP-based similarity relationships, indicating that RAPD-PCR amplification products can be used as a reliable indicator of genetic distance in X. fastidiosa. RAPD products have been cloned and sequenced, and pairs of 21-nucleotide PCR primers have been developed that detect X. fastidiosa in general and the causal agent of citrus variegated chlorosis specifically.


Author(s):  
L. Manjunatha ◽  
N. Srinivasa ◽  
T. Basavaraja ◽  
M.C. Keerthi

Background: Stunt disease is becoming the major yield limiting factors for the chickpea production and its occurrence has been reported form different states of India. The symptoms of stunt disease caused by chickpea chlorotic dwarf virus are difficult to distinguish Mastrevirus-infected plant from other disease-causing pathogens. Therefore, it’s an imperative for precise detection of causal agent of the disease for development of management strategy against chickpea stunt.Methods: Survey for the incidence of stunt disease with most characteristic symptoms of leaf reddening and yellow orange typical to Mastrevirus infection was conducted in chickpea fields. The causal agent of the stunt was characterized and described through conventional and virus-specific PCR-based diagnostic technique.Result: The study revealed that maximum of 60% of the chickpea stunt was observed in three districts of Uttar Pradesh with an average incidence of 12.90%. The PCR amplification using CpCDV-specific primers encoding coat protein resulted in an expected amplicon size of 350bp. The comparison of the partial coat protein sequence of virus revealed that maximum homology of 98.70% with previously identified chickpea chlorotic dwarf virus (CpCDV) strains, indicating that CpCDV associated with the chickpea stunt. Based on molecular characterization, chickpea stunt disease caused by Chickpea chlorotic dwarf virus (ssDNA), belongs to the genus Mastrevirus which is also responsible for the lentil stunt disease.


1996 ◽  
Vol 75 (05) ◽  
pp. 757-759 ◽  
Author(s):  
Rainer Blasczyk ◽  
Markus Ritter ◽  
Christian Thiede ◽  
Jenny Wehling ◽  
Günter Hintz ◽  
...  

SummaryResistance to activated protein C is the most common hereditary cause for thrombosis and significantly linked to factor V Leiden. In this study, primers were designed to identify the factor V mutation by allele-specific PCR amplification. 126 patients with thromboembolic events were analysed using this technique, PCR-RFLP and direct sequencing. The concordance between these techniques was 100%. In 27 patients a heterozygous factor VGln506 mutation was detected, whereas one patient with recurrent thromboembolism was homozygous for the point mutation. Due to its time- and cost-saving features allele-specific amplification should be considered for screening of factor VGln506.


2007 ◽  
Vol 45 (3) ◽  
pp. 1079-1079
Author(s):  
S. N. Leaw ◽  
H. C. Chang ◽  
H. F. Sun ◽  
R. Barton ◽  
J.-P. Bouchara ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 143-143 ◽  
Author(s):  
M. Cadavid ◽  
J. C. Ángel ◽  
J. I. Victoria

Symptoms of sugarcane orange rust were first observed in July 2010 on sugarcane (interspecific hybrid of Saccharum L. species) cv. CC 01-1884 planted in the La Cabaña Sugar Mill, Puerto Tejada, Colombia. Morphological features of uredinial lesions and urediniospores inspected with an optical microscope and scanning electron microscopy were distinct from common rust of sugarcane caused by Puccinia melanocephala Syd. & P. Syd., revealing spores identical morphologically to those described for the fungus P. kuehnii (Kruger) E. Butler, causal agent of sugarcane orange rust (1,3). Uredinial lesions were orange and distinctly lighter in color than pustules of P. melanocephala. Urediniospores were orange to light cinnamon brown, mostly ovoid to pyriform, variable in size (27.3 to 39.2 × 16.7 to 21.2 μm), with pronounced apical wall and moderately echinulate with spines evenly distributed. Paraphyses, telia, and teliospores were not observed. Species-specific PCR primers designed from the internal transcribed spacer (ITS)1, ITS2, and 5.8S rDNA regions of P. melanocephala and P. kuehnii were used to differentiate the two species (2). The primers Pm1-F and Pm1-R amplified a 480-bp product from P. melanocepahala DNA in leaf samples with symptoms of common rust. By contrast, the primers Pk1-F and Pk1-R generated a 527-bp product from presumed P. kuehnii DNA in leaf samples with signs of orange rust, confirming the identity as P. kuehnii. The Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) started a survey of different cultivars in nurseries and experimental and commercial fields in the Cauca River Valley and collected leaf samples for additional analyses. Experimental cvs. CC 01-1884, CC 01-1866, and CC 01-1305 were found to be highly susceptible to orange rust and were eliminated from regional trials, whereas commercial cvs. CC 85-92 and CC 84-75, the most widely grown cultivars, were resistant. With the discovery of orange rust of sugarcane in Colombia, Cenicaña has incorporated orange rust resistance in the selection and development of new cultivars. To our knowledge, this is the first report of P. kuehnii on sugarcane in Colombia. Orange rust has also been reported from the United States, Cuba, Mexico, Guatemala, Nicaragua, El Salvador, Costa Rica, Panama, Ecuador, and Brazil. References: (1) J. C. Comstock et al. Plant Dis. 92:175, 2008. (2) N. C. Glynn et al. Plant Pathol. 59:703, 2010. (3) E. V. Virtudazo et al. Mycoscience 42:167, 2001.


Sign in / Sign up

Export Citation Format

Share Document