A NOVEL METHOD FOR ASSESSMENT OF 16S RRNA GENE COPY NUMBER IN BACTERIAL GENOMES BY PULSED-FIELD GEL ELECTROPHORESIS AND PCR AMPLIFICATION

2009 ◽  
Vol 17 (3) ◽  
pp. 274-279 ◽  
Author(s):  
YONGHUI ZENG ◽  
NIANZHI JIAO
2008 ◽  
Vol 74 (5) ◽  
pp. 1660-1663 ◽  
Author(s):  
D. Bru ◽  
F. Martin-Laurent ◽  
L. Philippot

ABSTRACT We investigated the effects of internal primer-template mismatches on the efficiency of PCR amplification using the 16S rRNA gene as the model template DNA. We observed that the presence of a single mismatch in the second half of the primer extension sequence can result in an underestimation of up to 1,000-fold of the gene copy number, depending on the primer and position of the mismatch.


2014 ◽  
Vol 86 (22) ◽  
pp. 11028-11032 ◽  
Author(s):  
T. Iglesias González ◽  
M. Espina ◽  
L. M. Sierra ◽  
J. Bettmer ◽  
E. Blanco-González ◽  
...  

1990 ◽  
Vol 171 (6) ◽  
pp. 2101-2114 ◽  
Author(s):  
W J Zhang ◽  
M A Degli-Esposti ◽  
T J Cobain ◽  
P U Cameron ◽  
F T Christiansen ◽  
...  

We have examined the hypothesis that MHC ancestral haplotypes have a specific content of genes regulating the extent of autoimmune reactions. Gene copy number was quantitated by objective densitometry after PFGE was used to separate heterozygous AHs of different lengths. Initially we analyzed examples of known gene copy number at the C4 and 21 hydroxylase loci and showed that the approach provides predictable results. We then studied heterozygotes containing one characterized and one uncharacterized AH with particular attention to the gene copy number at the C4, Cyp21, and DRB loci. Each AH studied has a characteristic gene copy number at each locus studied. The same may be true of TNF, but other possibilities must be considered. AHs are markers for extensive chromosomal segments including particular numbers of several functional genes. Since AHs mark susceptibility to autoimmune disease, differences in gene copy number may be implicated.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4231-4231 ◽  
Author(s):  
Madoka Kuramitsu ◽  
Tomohiro Morio ◽  
Masatoshi Takagi ◽  
Tsutomu Toki ◽  
Kiminori Terui ◽  
...  

Abstract Abstract 4231 Introduction: Fifty percent of Diamond–Blackfan anemia (DBA) patients possess mutations in ribosomal protein genes. Although several ribosomal protein genes, RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26, have been reported to be mutated in some DBA patients, including point mutations, nonsense mutations, deletions, splice site mutations, and translocations, other DBA patients appear to have intact ribosomal protein genes. To identify new mutations in ribosomal protein genes from a different aspect, we focused on extensive deletions in these genes, such as mutations involving loss of a whole allele. In this study, we applied quantitative genomic PCR, and successfully developed a convenient method for detecting extensive deletions designated the “DBA gene copy number assay”. Methods: DBA patients should have an intact allele and a mutated allele for the responsible ribosomal protein gene, meaning that they will have an abnormal karyotype (gene copy number of N) if they have an extensive deletion. We attempted to clarify the copy numbers of ribosomal protein genes by the difference in a 1-cycle delay of threshold in a quantitative PCR (q-PCR) assay. To detect extensive deletions, at least 2 sets of gene-specific primers for each DBA responsible gene (RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26) were prepared. Appropriate primers to fit the setting that the threshold cycle (Ct) of the q-PCR should occur within 1 cycle of the Ct scores of other primer sets were selected. After validation, we identified 6, 3, 4, 3, 3, 6, 9, 3, and 2 specific primer sets for RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26, respectively. By simply looking at the q-PCR amplification curves by eye, we were easily able to judge the copy numbers of 2N (normal) or N (abnormal) for the ribosomal protein genes. Results: We performed the DBA gene copy number assay for 14 randomly selected undiagnosed patients from the Japanese DBA genomic resource at the University of Hirosaki, who had no mutations by genomic sequencing analyses. For each case, all the DBA responsible genes were confirmed using the diagnostic primers. The results of the DBA gene copy number assays revealed that 5 of the 14 probands (36%) had an extensive deletion in one of the DBA responsible genes. As an interesting case among the 5 positive cases, we confirmed an extensive deletion in the RPS19 gene. The Ct scores for 4 of the 9 primer sets for RPS19 demonstrated a 1-cycle delay, while the scores for the other 5 primer sets were normal. By genomic PCR amplification analyses, we identified a deletion from nt. -1400 to +5757 (7157 nucleotides) in the RPS19 gene. The deleted region included the promoter region, and exons 1, 2, and 3 of the RPS19 gene. The remaining 4 cases were 1 proband with an RPL5 deletion, 1 with an RPL35A deletion and 2 with RPS17 deletions. In particular, the extensive deletions in the RPL5 and RPS17 alleles are the first such cases reported. Discussion: Since it has been difficult to address the loss of a whole allele in DBA, such mutations have not been precisely examined within the DBA responsible genes. Our data suggest that extensive deletions in ribosomal protein genes comprise a significant proportion of DBA cases in Japan. Our novel method could become a useful tool for screening the gene copy numbers of ribosomal protein genes, and for identifying new pathological mutations. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 19 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Irina S. Kolesnikova ◽  
Alexander A. Dolskiy ◽  
Natalya A. Lemskaya ◽  
Yulia V. Maksimova ◽  
Asia R. Shorina ◽  
...  

2004 ◽  
Vol 70 (11) ◽  
pp. 6670-6677 ◽  
Author(s):  
Bradley S. Stevenson ◽  
Thomas M. Schmidt

ABSTRACT The role of the rRNA gene copy number as a central component of bacterial life histories was studied by using strains of Escherichia coli in which one or two of the seven rRNA operons (rrnA and/or rrnB) were deleted. The relative fitness of these strains was determined in competition experiments in both batch and chemostat cultures. In batch cultures, the decrease in relative fitness corresponded to the number of rRNA operons deleted, which could be accounted for completely by increased lag times and decreased growth rates. The magnitude of the deleterious effect varied with the environment in which fitness was measured: the negative consequences of rRNA operon deletions increased under culture conditions permitting more-rapid growth. The rRNA operon deletion strains were not more effective competitors under the regimen of constant, limited resources provided in chemostat cultures. Enhanced fitness in chemostat cultures would have suggested a simple tradeoff in which deletion strains grew faster (due to more efficient resource utilization) under resource limitation. The contributions of growth rate, lag time, Ks , and death rate to the fitness of each strain were verified through mathematical simulation of competition experiments. These data support the hypothesis that multiple rRNA operons are a component of bacterial life history and that they confer a selective advantage permitting microbes to respond quickly and grow rapidly in environments characterized by fluctuations in resource availability.


2006 ◽  
Vol 56 (3) ◽  
pp. 671-673 ◽  
Author(s):  
Paul N. Levett ◽  
Roger E. Morey ◽  
Renee L. Galloway ◽  
Arnold G. Steigerwalt

Isolates of Leptospira from two human cases of leptospirosis in Denmark and France were studied using DNA–DNA relatedness, G+C content, 16S rRNA gene sequence data and pulsed-field gel electrophoresis. These isolates differed from previously described species of Leptospira and are defined as Leptospira broomii sp. nov. The type strain is 5399T (=ATCC BAA-1107T=KIT 5399T).


Sign in / Sign up

Export Citation Format

Share Document