Hydraulic Conductivity Measurements in the Unsaturated Zone Using Improved Well Analyses

1989 ◽  
Vol 9 (3) ◽  
pp. 184-193 ◽  
Author(s):  
D.E. Elrick ◽  
W.D. Reynolds ◽  
K.A. Tan
1999 ◽  
Vol 30 (4-5) ◽  
pp. 333-360 ◽  
Author(s):  
Larry McKay ◽  
Johnny Fredericia ◽  
Melissa Lenczewski ◽  
Jørn Morthorst ◽  
Knud Erik S. Klint

A field experiment shows that rapid downward migration of solutes and microorganisms can occur in a fractured till. A solute tracer, chloride, and a bacteriophage tracer, PRD-1, were added to groundwater and allowed to infiltrate downwards over a 4 × 4 m area. Chloride was detected in horizontal filters at 2.0 m depth within 3-40 days of the start of the tracer test, and PRD-1 was detected in the same filters within 0.27 - 27 days. At 2.8 m depth chloride appeared in all the filters, but PRD-1 appeared in only about one-third of the filters. At 4.0 m depth chloride appeared in about one-third of the filters and trace amounts of PRD-1 were detected in only 2 of the 36 filters. Transport rates and peak tracer concentrations decreased with depth, but at each depth there was a high degree of variability. The transport data is generally consistent with expectations based on hydraulic conductivity measurements and on the observed density of fractures and biopores, both of which decrease with depth. Transport of chloride was apparently retarded by diffusion into the fine-grained matrix between fractures, but the rapid transport of PRD-1, with little dispersion, indicates that it was transported mainly through the fractures.


2019 ◽  
Vol 79 (2) ◽  
pp. 314-322 ◽  
Author(s):  
F. Licciardello ◽  
R. Aiello ◽  
V. Alagna ◽  
M. Iovino ◽  
D. Ventura ◽  
...  

Abstract This study aims at defining a methodology to evaluate Ks reductions of gravel material constituting constructed wetland (CW) bed matrices. Several schemes and equations for the Lefranc's test were compared by using different gravel sizes and at multiple spatial scales. The falling-head test method was implemented by using two steel permeameters: one impervious (IMP) and one pervious (P) on one side. At laboratory scale, mean K values for a small size gravel (8–15 × 10−2 m) measured by the IMP and the P permeameters were equal to 19,466 m/d and 30,662 m/d, respectively. Mean Ks values for a big size gravel (10–25 × 10−2 m) measured by the IMP and the P permeameters were equal to 12,135 m/d and 20,866 m/d, respectively. Comparison of Ks values obtained by the two permeameters at laboratory scale as well as a sensitivity analysis and a calibration, lead to the modification of the standpipe equation, to evaluate also the temporal variation of the horizontal Ks. In particular, both permeameters allow the evaluation of the Ks decreasing after 4 years-operation and 1–1.5 years' operation of the plants at full scale (filled with the small size gravel) and at pilot scale (filled with the big size gravel), respectively.


2017 ◽  
Vol 76 (7) ◽  
pp. 1666-1675 ◽  
Author(s):  
Mateus Pimentel Matos ◽  
André Baxter Barreto ◽  
Gabriel Rodrigues Vasconcellos ◽  
Antonio Teixeira Matos ◽  
Gustavo Ferreira Simões ◽  
...  

Despite the fact that several authors consider the available measurement methods of hydraulic conductivity (ks) suitable for a good representation of the bed condition and clogging potential in horizontal subsurface flow constructed wetlands, others have questioned their adequacy. In this work, hydraulic conductivity measurements with conventional and modified methods were undertaken in two small full-scale units, one planted with cattail (Typha latifolia) and the other unplanted. Both units had already been operating for seven years and showed a high degree of clogging. It was observed that the use of the falling head method, with the introduction of the tubes during the test, provided results without a clear spatial trend. On the other hand, tests done on monitoring wells inserted during construction time showed, as expected, ks increasing with the horizontal distance from the inlet, but without reflecting actual field conditions. It was observed that, as the bed became more clogged, the use of the reported methods became more complex, suggesting the need of other methodologies. The use of planted fixed reactors (removable baskets installed in the bed) with evaluation of ks at constant head in the laboratory showed potential for the characterization of the hydrodynamic properties of the porous medium.


Ground Water ◽  
1978 ◽  
Vol 16 (1) ◽  
pp. 49-50
Author(s):  
David R. Buss ◽  
Bryson D. Trexler ◽  
William A. Kneller

2010 ◽  
Vol 13 (4) ◽  
pp. 775-793 ◽  
Author(s):  
Yong Jung ◽  
Ranji S. Ranjithan ◽  
G. Mahinthakumar

Detailed hydraulic conductivity estimation is a difficult problem as the number of direct measurements available at a typical field site is relatively few and sparse. A common approach to estimate hydraulic conductivity is to combine direct hydraulic conductivity measurements with secondary measurements such as hydraulic head and tracer concentrations in an inverse modeling approach. Even with secondary measurements this may constitute an underdetermined (or over-parameterized) inverse problem giving rise to ‘non-unique’ and incorrect estimates. One approach to reduce over-parameterization is to estimate hydraulic conductivity at a few carefully chosen points called ‘pilot points’ (i.e. reduction in parameter space). This paper develops a D-optimality based criterion method (DBM) for pilot point selection and tests its effectiveness for estimating hydraulic conductivity fields using several synthetic cases. Results show that the selected pilot points using this approach lead to a more accurate hydraulic conductivity characterization than either random or sequential pilot point location selection methods.


Sign in / Sign up

Export Citation Format

Share Document