pilot points
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2082
Author(s):  
Aditya Kapoor ◽  
Deepak Kashyap

Pilot point methodology (PPM) permits estimation of transmissivity at unsampled pilot points by solving the hydraulic head based inverse problem. Especially relevant to areas with sparse transmissivity data, the methodology supplements the limited field data. Presented herein is an approach for estimating parameters of PPM honoring the objectives of refinement of the transmissivity (T) interpolation and the model calibration. The parameters are the locations and number of pilot transmissivity points. The location parameter is estimated by defining a qualifying matrix Q comprising weighted sum of the hydraulic head-sensitivity and the kriging variance fields. Whereas the former component of Q promotes the model calibration, the latter one leads to improved T interpolation by locating pilot points in un-sampled tracts. Further, a three-stage methodology is proposed for an objective determination of the number of pilot points. It is based upon sequential upgradation of the Variogram as the pilot points are added to the data base, ensuring its convergence with the head-based optimal Variogram. The model has been illustrated by applying it to Satluj-Beas interbasin wherein the pumping test data is not only sparse, but also unevenly distributed.


Author(s):  
G. Tziatzios ◽  
P. Sidiropoulos ◽  
L. Vasiliades ◽  
A. Lyra ◽  
N. Mylopoulos ◽  
...  

Abstract Groundwater depletion poses a major threat to global groundwater resources with increasing trends due to natural and anthropogenic activities. This study presents a surface-groundwater framework for water resources modelling of ill-posed problems in hydrogeologically data-scarce areas. The proposed framework is based on the application of a conceptual water balance model and composed of surface hydrological (UTHBAL) and groundwater flow simulation with the integration of a Newton formulation of the MODFLOW-2005 code (MODFLOW-NWT) and PEST suite modules. The groundwater simulation includes a pre-processor tool for automated calibration and a post-processor tool for automated validation. The methodology was applied to a rural region of Central Greece, Lake Karla Basin, which is degraded due to groundwater resources overexploitation to cover irrigation water demands. The aquifer is modelled focusing on precise simulation – validation procedure of the conceptual model. The groundwater model was calibrated with the calibration pre-processor tool for spatially distributed hydraulic conductivity with the pilot points method. The calibration process achieved satisfactory results as validated by the post-process analysis of observed and simulated water levels. The findings for the groundwater budget indicate that the groundwater system is still under intense pressure even though farming activity in recent years has turned to less water-intensive crops. HIGHLIGHT My research deals with the Pilot Points Method on Groundwater Modelling in area with scarce hydro-geologic data.


Author(s):  
Giovanni Formentin ◽  
Jacopo Terrenghi ◽  
Mariangela Vitiello ◽  
Alberto Francioli

A gasoline leak caused the contamination of a shallow alluvial aquifer in an urbanized area in Northern Italy. A rapid intervention was conceived to stop the spreading of contamination: a hydraulic barrier has been placed downstream of the source to collect both the floating oil and the contaminated groundwater. A numerical model has been built to assess the performance of the existing barrier, and to design a new configuration of the hydraulic barrier aimed at stopping the hydrocarbon plume already dispersed downstream. A preliminary model was built and calibrated against groundwater levels measured in 41 monitoring wells. Hydraulic conductivities in pilot points, recharge zones and constant head BCs were calibrated. The non-uniqueness of the calibrated parameters led to identify 283 alternative parameter sets, all able to represent the observed heads within an absolute average error of 10 cm. These sets, generated with the Null space Monte Carlo method, served to build 283 models, used to simulate the dispersion of solved contamination through forward particle tracking. A further step was the censoring of all simulations resulting in particle paths at a distance closer than 5 meters from monitoring wells where contamination was never found since the spilled occurred. Analysis was performed of the particle paths generated with the 187 models that were retained. Overall, the barrier captures 89% of all particles. Moreover, in 74% of all realizations, at least a particle escapes, with a mean and median of 7 particles in each realization where it happens. Two main contamination paths are identified: while one is confirmed by the monitoring wells already present, another one would require the placement of new wells to assess the actual presence of contamination. Thus, the validity of the stochastic simulation would be assessed together with the need to improve the performance of the hydraulic barrier.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 679 ◽  
Author(s):  
Husam Baalousha ◽  
Marwan Fahs ◽  
Fanilo Ramasomanana ◽  
Anis Younes

In hydrogeological modelling, two approaches are commonly used for model calibration: zonation and the pilot-points method. Zonation assumes an abrupt spatial change in parameter values, which could be unrealistic in field applications. The pilot-points method produces smoothly distributed parameters compared to the zonation approach; however, the number and placement of pilot-points can be challenging. The main goal of this paper is to explore the effect of pilot-points number and locations on the calibrated parameters. A 3D groundwater flow model was built for the northern karst aquifer of Qatar. A conceptual model of this aquifer was developed based on MODFLOW software (United States Geological Survey). The model was calibrated using the parameter estimation and uncertainty analysis (PEST) package employing historical data of groundwater levels. The effect of the number and locations of pilot-points was examined by running the model using a variable numbers of points and several perturbations of locations. The calibration errors for all the runs (corresponding to different configurations of pilot-points) were maintained under a certain threshold. A statistical analysis of the calibrated parameters was then performed to evaluate how far these parameters are impacted by the pilot-point locations. Finally, an optimization method was proposed for pilot-points placement using recharge and observed piezometric maps. The results revealed that the pilot-points number, locations, and configurations have a significant effect on the calibrated parameter, especially in the high permeable regions corresponding to the karstic zones. The outcome of this study may help focus on areas of high uncertainty where more field data should be collected to improve model calibration. It also helps the placement of pilot-points for a robust calibration.


2016 ◽  
Vol 52 (5) ◽  
pp. 3966-3983 ◽  
Author(s):  
S. Jiménez ◽  
G. Mariethoz ◽  
R. Brauchler ◽  
P. Bayer

Sign in / Sign up

Export Citation Format

Share Document