Four Convergent Patterns of Input from the Six Semicircular Canals to Motoneurons of Different Neck Muscles in the Upper Cervical Cord

1996 ◽  
Vol 781 (1 Lipids and Sy) ◽  
pp. 264-274 ◽  
Author(s):  
Y. SHINODA ◽  
Y. SUGIUCHI ◽  
T. FUTAMI ◽  
S. KAKEI ◽  
Y. IZAWA ◽  
...  
1994 ◽  
Vol 72 (6) ◽  
pp. 2691-2702 ◽  
Author(s):  
Y. Shinoda ◽  
Y. Sugiuchi ◽  
T. Futami ◽  
N. Ando ◽  
T. Kawasaki

1. The pattern of connections between the six semicircular canals and neck motoneurons of the multifidus muscle group was investigated by recording intracellular potentials from motoneurons in the upper cervical cord of anesthetized cats. 2. Synaptic potentials were recorded in motoneurons of the rectus capitis posterior (RCP) muscle at C1, the obliquus capitis inferior (OCI) muscle at C1 and C2, and the cervical multifidus muscle (Multi) at C4 in response to electrical stimulation of individual ampullary nerves of the six semicircular canals. Excitatory or inhibitory postsynaptic potentials (EPSPs or IPSPs, respectively) were evoked by separate stimulation of individual ampullary nerves in all of the neck motoneurons. Virtually all of the neck motoneurons received convergent inputs from the six ampullary nerves. 3. Motoneurons that supplied a single muscle had a homogeneous pattern of input from the six semicircular canals. There were two patterns of input from the six semicircular canals to motoneurons of the multifidus muscle group. RCP and Multi motoneurons were excited by stimulation of the bilateral anterior canal nerves (ACNs) and the contralateral lateral canal nerve (LCN) and inhibited by stimulation of the bilateral posterior canal nerves (PCNs) and the ipsilateral LCN. This input pattern is similar to that previously observed in other dorsal extensor muscles, whereas the other input pattern observed in OCI motoneurons is entirely new. OCI motoneurons at C1 and C2 were excited by stimulation of the ipsilateral ACN, PCN, and the contralateral LCN and inhibited by stimulation of the contralateral ACN, PCN, and the ipsilateral LCN. 4. Most postsynaptic potentials (PSPs) were disynaptic, but there were trisynaptic inhibitory connections between the contralateral ACN and PCN and OCI motoneurons, and between the contralateral PCN and RCP motoneurons. 5. The pathways for mediating these inputs from different semicircular canals to neck motoneurons were determined by making lesions in the lower medulla. Transection of the ipsilateral medial longitudinal fascicle (MLF) abolished the following potentials: all disynaptic PSPs in RCP motoneurons except the disynaptic EPSPs from the ipsilateral ACN, and in OCI motoneurons, disynaptic PSPs from the bilateral LCNs, and disynaptic IPSPs from the contralateral PCN. Complete bilateral section of the MLF did not affect the disynaptic EPSPs from the ipsilateral ACN in RCP motoneurons, the disynaptic EPSPs from the ipsilateral ACN and PCN in OCI motoneurons, nor the trisynaptic IPSPs from the contralateral ACN and PCN in COI motoneurons and from the contralateral PCN in RCP motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 77 (3) ◽  
pp. 1234-1253 ◽  
Author(s):  
Y. Shinoda ◽  
Y. Sugiuchi ◽  
T. Futami ◽  
N. Ando ◽  
J. Yagi

Shinoda, Y., Y. Sugiuchi, T. Futami, N. Ando, and J. Yagi. Input patterns and pathways from the six semicircular canals to motoneurons of neck muscles. II. The longissimus and semispinalis muscle groups. J. Neurophysiol. 77: 1234–1253, 1997. To reveal patterns of input from the six semicircular canals to motoneurons of various neck muscles and their relationship to the mechanical actions of individual neck muscles, patterns of input to neck motoneurons of the longissimus and the semispinalis muscle groups were investigated in the upper cervical spinal cord of anesthetized cats. Intracellular potentials were recorded from motoneurons of the longissimus muscle group (obliquus capitis superior muscle, OCS; splenius muscle, SPL; longissimus muscle, LONG) and the semispinalis muscle group (biventer cervicis muscle, BIV; complexus muscle, COMP), and effects of separate electrical stimulation of the six ampullary nerves on them were analyzed in each preparation. Neck motoneurons usually received convergent inputs from all of the six ampullary nerves, and motoneurons that supplied a particular muscle had a homogeneous pattern of input from the six ampullary nerves. Two different patterns of input were identified for motoneurons of these two muscle groups; one pattern for motoneurons of the longissimus muscle group and the other pattern for motoneurons of the semispinalis muscle group. Motoneurons of the OCS, the SPL, and the LONG muscles received excitation from the three contralateral ampullary nerves and inhibition from the three ipsilateral ampullary nerves. BIV and COMP motoneurons received excitation from the bilateral anterior canal nerves (ACNs) and the contralateral lateral canal nerve (LCN) and inhibition from the bilateral posterior canal nerves (PCNs) and the ipsilateral LCN. Latencies of postsynaptic potentials (PSPs) evoked by stimulation of each of the six ampullary nerves indicated that the earliest component of excitatory PSPs (EPSPs) and inhibitory PSPs (IPSPs) was disynaptic in these motoneurons. However, trisynaptic IPSPs were evoked by stimulation of the contralateral PCN in a considerable number of BIV and COMP motoneurons. In OCS, SPL, and LONG motoneurons, all of the excitation from the contralateral and all of the inhibition from the ipsilateral ampullary nerves were mediated through the ipsilateral medial longitudinal fascicle (MLF). In BIV and COMP motoneurons, disynaptic excitation from the contralateral ACN and LCN and disynaptic inhibition from the ipsilateral LCN and bilateral PCNs were mediated through the ipsilateral MLF, whereas disynaptic excitation from the ipsilateral ACN was mediated through the ipsilateral lateral vestibulospinal tract. The patterns of semicircular canal input to neck motoneurons of these two muscle groups are related closely to the mechanical actions of individual neck muscles and the optimal stimulus to the semicircular canals such that the connections will tend to stabilize head position in response to head perturbations.


2008 ◽  
Vol 48 (8) ◽  
pp. 568-574
Author(s):  
Katsuhisa Masaki ◽  
Masaharu Ohno ◽  
Hironobu Maeda ◽  
Tetsuo Hamada ◽  
Toru Iwaki ◽  
...  

1986 ◽  
Vol 56 (4) ◽  
pp. 1147-1156 ◽  
Author(s):  
R. H. Schor ◽  
I. Suzuki ◽  
S. J. Timerick ◽  
V. J. Wilson

The responses of interneurons in the cervical spinal cord of the decerebrate cat to whole-body tilt were studied with a goal of identifying spinal elements in the production of forelimb vestibular postural reflexes. Interneurons both in the cervical enlargement and at higher levels, from which propriospinal neurons have been identified, were examined, both in animals with intact labyrinths and in animals with nonfunctional semicircular canals (canal plugged). Most cervical interneurons responding to tilt respond best to rotations in vertical planes aligned within 30 degrees of the roll plane. Two to three times as many neurons are excited by side-up roll tilt as are excited by side-down roll. In cats with intact labyrinths, most responses have dynamics proportional either to (and in phase with) the position of the animal or to a sum of position and tilt velocity. This is consistent with input from both otolith organs and semicircular canals. In animals without functioning canals, the "velocity" response is absent. In a few cells (8 out of 76), a more complex response, characterized by an increasing gain and progressive phase lag, was observed. These response dynamics characterize the forelimb reflex in canal-plugged cats and have been previously observed in vestibular neurons in such preparations.


1999 ◽  
Vol 82 (5) ◽  
pp. 2092-2107 ◽  
Author(s):  
Harumitsu Hirata ◽  
James W. Hu ◽  
David A. Bereiter

Corneal-responsive neurons were recorded extracellularly in two regions of the spinal trigeminal nucleus, subnucleus interpolaris/caudalis (Vi/Vc) and subnucleus caudalis/upper cervical cord (Vc/C1) transition regions, from methohexital-anesthetized male rats. Thirty-nine Vi/Vc and 26 Vc/C1 neurons that responded to mechanical and electrical stimulation of the cornea were examined for convergent cutaneous receptive fields, responses to natural stimulation of the corneal surface by CO2 pulses (0, 30, 60, 80, and 95%), effects of morphine, and projections to the contralateral thalamus. Forty-six percent of mechanically sensitive Vi/Vc neurons and 58% of Vc/C1 neurons were excited by CO2 stimulation. The evoked activity of most cells occurred at 60% CO2 after a delay of 7–22 s. At the Vi/Vc transition three response patterns were seen. Type I cells ( n = 11) displayed an increase in activity with increasing CO2 concentration. Type II cells ( n = 7) displayed a biphasic response, an initial inhibition followed by excitation in which the magnitude of the excitatory phase was dependent on CO2 concentration. A third category of Vi/Vc cells (type III, n = 3) responded to CO2 pulses only after morphine administration (>1.0 mg/kg). At the Vc/C1 transition, all CO2-responsive cells ( n = 15) displayed an increase in firing rates with greater CO2 concentration, similar to the pattern of type I Vi/Vc cells. Comparisons of the effects of CO2 pulses on Vi/Vc type I units, Vi/Vc type II units, and Vc/C1 corneal units revealed no significant differences in threshold intensity, stimulus encoding, or latency to sustained firing. Morphine (0.5–3.5 mg/kg iv) enhanced the CO2-evoked activity of 50% of Vi/Vc neurons tested, whereas all Vc/C1 cells were inhibited in a dose-dependent, naloxone-reversible manner. Stimulation of the contralateral posterior thalamic nucleus antidromically activated 37% of Vc/C1 corneal units; however, no effective sites were found within the ventral posteromedial thalamic nucleus or nucleus submedius. None of the Vi/Vc corneal units tested were antidromically activated from sites within these thalamic regions. Corneal-responsive neurons in the Vi/Vc and Vc/C1 regions likely serve different functions in ocular nociception, a conclusion reflected more by the difference in sensitivity to analgesic drugs and efferent projection targets than by the CO2 stimulus intensity encoding functions. Collectively, the properties of Vc/C1 corneal neurons were consistent with a role in the sensory-discriminative aspects of ocular pain due to chemical irritation. The unique and heterogeneous properties of Vi/Vc corneal neurons suggested involvement in more specialized ocular functions such as reflex control of tear formation or eye blinks or recruitment of antinociceptive control pathways.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Sasitorn Siritho ◽  
Wadchara Pumpradit ◽  
Wiboon Suriyajakryuththana ◽  
Krit Pongpirul

A 43-year-old female presented with severe sharp stabbing right-sided periorbital and retroorbital area headache, dull-aching unilateral jaw pain, eyelid swelling, ptosis, and tearing of the right eye but no rash. The pain episodes lasted five minutes to one hour and occurred 10–15 times per day with unremitting milder pain between the attacks. She later developed an erythematous maculopapular rash over the right forehead and therefore was treated with antivirals. MRI performed one month after the onset revealed small hypersignal-T2 in the right dorsolateral mid-pons and from the right dorsolateral aspect of the pontomedullary region to the right dorsolateral aspect of the upper cervical cord, along the course of the principal sensory nucleus and spinal nucleus of the right trigeminal nerve. No definite contrast enhancement of the right brain stem/upper cervical cord was seen. Orbital imaging showed no abnormality of bilateral optic nerves/chiasm, extraocular muscles, and globes. Slight enhancement of the right V1, V2, and the cisterna right trigeminal nerve was detected. Our findings support the hypothesis of direct involvement by virus theory, reflecting rostral viral transmission along the gasserian ganglion to the trigeminal nuclei at brainstem and caudal spreading along the descending tract of CN V.


Sign in / Sign up

Export Citation Format

Share Document