Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex

2011 ◽  
Vol 1239 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Jonathan D. Wallis ◽  
Steven W. Kennerley
2003 ◽  
Vol 90 (3) ◽  
pp. 1865-1876 ◽  
Author(s):  
Ivan E.T. de Araujo ◽  
Morten L. Kringelbach ◽  
Edmund T. Rolls ◽  
Francis McGlone

In an event-related functional magnetic resonance imaging (fMRI) study in humans it was shown, first, that water produces activations in cortical taste areas (in particular the frontal operculum/anterior insula which is the primate primary taste cortex, and the caudal orbitofrontal/secondary taste cortex) comparable to those produced by the prototypical tastants salt and glucose. Second, the activations in the frontal operculum/anterior insula produced by water when thirsty were still as large after the subjects had consumed water to satiety. Third, in contrast, the responses to water in the caudal orbitofrontal cortex were modulated by the physiological state of the body, in that responses to the oral delivery of water in this region were not found after the subjects had drunk water to satiety. Fourth, further evidence that the reward value or pleasantness of water is represented in the orbitofrontal cortex was that a positive correlation with the subjective ratings of the pleasantness of the water was found with activations in the caudal and anterior orbitofrontal cortex, and also in the anterior cingulate cortex. Fifth, it was found that a region of the middle part of the insula was also activated by water in the mouth, and further, that this activation only occurred when thirsty. Sixth, analyses comparing pre- and postsatiety periods (i.e., when thirsty and when not thirsty) independently of stimulus delivery revealed higher activity levels in the rostral anterior cingulate cortex. The activity of the rostral anterior cingulate cortex thus appears to reflect the thirst level or motivational state of the subjects.


2014 ◽  
Vol 111 (9) ◽  
pp. 1717-1720 ◽  
Author(s):  
Abbas Khani

Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.


2018 ◽  
Vol 29 (8) ◽  
pp. 3617-3630 ◽  
Author(s):  
Edmund T Rolls ◽  
Wei Cheng ◽  
Weikang Gong ◽  
Jiang Qiu ◽  
Chanjuan Zhou ◽  
...  

Abstract The first voxel-level resting-state functional connectivity (FC) neuroimaging analysis of depression of the anterior cingulate cortex (ACC) showed in 282 patients with major depressive disorder compared with 254 controls, some higher, and some lower FCs. However, in 125 unmedicated patients, primarily increases of FC were found: of the subcallosal anterior cingulate with the lateral orbitofrontal cortex, of the pregenual/supracallosal anterior cingulate with the medial orbitofrontal cortex, and of parts of the anterior cingulate with the inferior frontal gyrus, superior parietal lobule, and with early cortical visual areas. In the 157 medicated patients, these and other FCs were lower than in the unmedicated group. Parcellation was performed based on the FC of individual ACC voxels in healthy controls. A pregenual subdivision had high FC with medial orbitofrontal cortex areas, and a supracallosal subdivision had high FC with lateral orbitofrontal cortex and inferior frontal gyrus. The high FC in depression between the lateral orbitofrontal cortex and the subcallosal parts of the ACC provides a mechanism for more non-reward information transmission to the ACC, contributing to depression. The high FC between the medial orbitofrontal cortex and supracallosal ACC in depression may also contribute to depressive symptoms.


2021 ◽  
Vol 11 (8) ◽  
pp. 1096
Author(s):  
Yixuan Chen

Decision making is crucial for animal survival because the choices they make based on their current situation could influence their future rewards and could have potential costs. This review summarises recent developments in decision making, discusses how rewards and costs could be encoded in the brain, and how different options are compared such that the most optimal one is chosen. The reward and cost are mainly encoded by the forebrain structures (e.g., anterior cingulate cortex, orbitofrontal cortex), and their value is updated through learning. The recent development on dopamine and the lateral habenula’s role in reporting prediction errors and instructing learning will be emphasised. The importance of dopamine in powering the choice and accounting for the internal state will also be discussed. While the orbitofrontal cortex is the place where the state values are stored, the anterior cingulate cortex is more important when the environment is volatile. All of these structures compare different attributes of the task simultaneously, and the local competition of different neuronal networks allows for the selection of the most appropriate one. Therefore, the total value of the task is not encoded as a scalar quantity in the brain but, instead, as an emergent phenomenon, arising from the computation at different brain regions.


2018 ◽  
Author(s):  
Eleftheria Pervolaraki ◽  
Adam L. Tyson ◽  
Francesca Pibiri ◽  
Steven L. Poulter ◽  
Amy C. Reichelt ◽  
...  

AbstractBackgroundOf the many genetic mutations known to increase the risk of autism spectrum disorder, a large proportion cluster upon synaptic proteins. One such family of presynaptic proteins are the neurexins (NRXN), and recent genetic and mouse evidence has suggested a causative role for NRXN2 in generating altered social behaviours. Autism has been conceptualised as a disorder of atypical connectivity, yet how single-gene mutations affect such connectivity remains under-explored. To attempt to address this, we have developed a quantitative analysis of microstructure and structural connectivity leveraging diffusion tensor MRI (DTI) with high-resolution 3D imaging in optically cleared (CLARITY) brain tissue in the same mouse, applied here to the Nrxn2α knockout (KO) model.MethodsFixed brains of Nrxn2α KO mice underwent DTI using 9.4T MRI, and diffusion properties of socially-relevant brain regions were quantified. The same tissue was then subjected to CLARITY to immunolabel axons and cell bodies, which were also quantified.ResultsDTI revealed decreases in fractional anisotropy and increases in apparent diffusion coefficient in the amygdala (including the basolateral nuclei), the anterior cingulate cortex, the orbitofrontal cortex and the hippocampus. Radial diffusivity of the anterior cingulate cortex and orbitofrontal cortex was significantly increased in Nrxn2α KO mice, as were tracts between the amygdala and the orbitofrontal cortex. Using CLARITY, we find significantly altered axonal orientation in the amygdala, orbitofrontal cortex and the anterior cingulate cortex, which was unrelated to cell density.ConclusionsOur findings demonstrate that deleting a single neurexin gene (Nrxn2α) induces atypical structural connectivity within socially-relevant brain regions. More generally, our combined within-subject DTI and CLARITY approach presents a new, more sensitive method of revealing hitherto undetectable differences in the autistic brain.


Cortex ◽  
2020 ◽  
Vol 123 ◽  
pp. 185-199 ◽  
Author(s):  
Jingnan Du ◽  
Edmund T. Rolls ◽  
Wei Cheng ◽  
Yu Li ◽  
Weikang Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document