Hydrology and Water Budget for a Forested Atlantic Coastal Plain Watershed, South Carolina

Author(s):  
Scott V. Harder ◽  
Devendra M. Amatya ◽  
Timothy J. Callahan ◽  
Carl C. Trettin ◽  
Jon Hakkila
1982 ◽  
Vol 18 (3) ◽  
pp. 337-359 ◽  
Author(s):  
L. McCartan ◽  
J. P. Owens ◽  
B. W. Blackwelder ◽  
B. J. Szabo ◽  
D. F. Belknap ◽  
...  

AbstractThe results of an integrated study comprising litho- and biostratigraphic investigations, uranium-series coral dating, amino acid racemization in molluscs, and paleomagnetic measurements are compared to ascertain relative and absolute ages of Pleistocene deposits of the Atlantic Coastal Plain in North and South Carolina. Four depositional events are inferred for South Carolina and two for North Carolina by all methods. The data suggest that there are four Pleistocene units containing corals that have been dated at about 100,000 yr, 200,000 yr, 450,000 yr, and over 1,000,000 yr. Some conflicts exist between the different methods regarding the correlation of the younger of these depositional events between Charleston and Myrtle Beach. Lack of good uranium-series dates for the younger material at Myrtle Beach makes the correlation with the deposits at Charleston more difficult.


Author(s):  
Dorota Miroslaw-Swiatek ◽  
Devendra M. Amatya

Abstract Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA). Turkey Creek (WS 78) is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height) on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.


1980 ◽  
Vol 13 (2) ◽  
pp. 213-229 ◽  
Author(s):  
Thomas M. Cronin

AbstractMarine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2–10 m from Maryland to northern Florida; middle Pleistocene, 6–15 m in northern South Carolina; early Pleistocene, 4–22 m in central North Carolina, 13–35 m in southern North Carolina, and 6–27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record.


1982 ◽  
Vol 18 (3) ◽  
pp. 311-336 ◽  
Author(s):  
J. F. Wehmiller ◽  
D. F. Belknap

AbstractAmino acid enantiomeric (D/L) ratios in the mollusk Mercenaria are compared with recently published biostratigraphic and/or U-series solitary coral data from 22 Quaternary localities on the central and southern Atlantic Coastal Plain. In all cases, local relative aminostratigraphic sequences are consistent with relative ages inferred from U-series or biostratigraphic data, although occasionally more depositional events are recognized by aminostratigraphic than biostratigraphic methods. However, if the U-series data are used as age calibrations for the D/L values, latitudinal trends of “isochronous” D/L values are highly variable and conflict with trends expected from the present temperature gradient, which is smooth and nearly linear between 45° and 25° N. Age estimation can be performed independently of the U-series data using a kinetic model that relies on the assumption that Pleistocene temperature gradients have also been smooth functions of latitude, although significantly steeper than the present temperature gradient. Within the uncertainties of this assumption, kinetic model age estimates for localities in the coastal plain fall into the following groups: 70,000–130,000 yr, 200–250,000 yr, 300,000–400,000 yr, 500,000–600,000 yr, 700,000–800,000 yr, and > 1,000,000 yr. Major conflicts between these model age estimates are observed for localities near Charleston, South Carolina and in central Virginia. These conflicts could indicate that the basic temperature assumptions of aminostratigraphy are incorrect, and that apparent local aminostratigraphic sequences (clusters of different D/L values) could be due to factors other than age difference. Alternatively, some of the U-series dates may be only minimum ages for these localities.


1992 ◽  
Vol 38 (3) ◽  
pp. 275-291 ◽  
Author(s):  
J. F. Wehmiller ◽  
L. L. York ◽  
D. F. Belknap ◽  
S. W. Snyder

AbstractAminostratigraphic correlations of emergent Quaternary deposits along the U.S. Atlantic Coastal Plain have employed independent radiometric data, regional temperature history models, and assumptions regarding the nature of the preserved late Quaternary sea-level record on this passive margin. A substantial “aminostratigraphic offset” is required if regional aminozones are rigorously constrained by all available Th/U data. New insights regarding the relation of this offset to subsurface stratigraphy in the Cape Fear region of southeastern North Carolina can explain these conflicts as consequences of the highly incomplete post-Cretaceous depositional record of the region. Southward projection of theoretical aminostratigraphic correlation trends suggests that stage 5 correlative marine units are rarely preserved on the emergent portion of the Coastal Plain between Cape Lookout and central South Carolina and that samples of this age would be most frequently found in this region only as fragmentary (and/or reworked) deposits on the inner shelf or in the subsurface of modern barrier islands. If this hypothesis is correct, then the accuracy of several Th/U coral dates from the South Carolina Coastal Plain must be questioned, along with sea-level, tectonic, and paleoclimatic conclusions derived from these dates.


Sign in / Sign up

Export Citation Format

Share Document