Climate Change Impacts on Irrigation Water Needs in the jaguaribe River Basin1

Author(s):  
Rubens S. Gondim ◽  
Marco A.H. de Castro ◽  
Aline de H.N. Maia ◽  
Sílvio R.M. Evangelista ◽  
Sérgio C. de F. Fuck
2007 ◽  
Vol 7 (3) ◽  
pp. 149-159 ◽  
Author(s):  
J. A. Rodríguez Díaz ◽  
E. K. Weatherhead ◽  
J. W. Knox ◽  
E. Camacho

Agriculture ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Panagiotis Dalias ◽  
Anastasis Christou ◽  
Damianos Neocleous

The study aimed at investigating eventual deviations from typical recommendations of irrigation water application to crops in Cyprus given the undeniable changes in recent weather conditions. It focused on the seasonal or monthly changes in crop evapotranspiration (ETc) and net irrigation requirements (NIR) of a number of permanent and annual crops over two consecutive overlapping periods (1976–2000 and 1990–2014). While the differences in the seasonal ETc and NIR estimates were not statistically significant between the studied periods, differences were identified via a month-by-month comparison. In March, the water demands of crops appeared to be significantly greater during the recent past in relation to 1976–2000, while for NIR, March showed statistically significant increases and September showed significant decreases. Consequently, the adjustment of irrigation schedules to climate change by farmers should not rely on annual trends as an eventual mismatch of monthly crop water needs with irrigation water supply might affect the critical growth stages of crops with a disproportionately greater negative impact on yields and quality. The clear increase in irrigation needs in March coincides with the most sensitive growth stage of irrigated potato crops in Cyprus. Therefore, the results may serve as a useful tool for current and future adaptation measures.


2007 ◽  
Vol 74 (7) ◽  
pp. 1083-1107 ◽  
Author(s):  
Günther Fischer ◽  
Francesco N. Tubiello ◽  
Harrij van Velthuizen ◽  
David A. Wiberg

2020 ◽  
Vol 63 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Kritika Kothari ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
Clyde L. Munster

HighlightsIrrigated grain sorghum yield and irrigation water use decreased under climate change.Increase in growing season temperature beyond 26°C resulted in a sharp decline in grain sorghum yield.Irrigating during early reproductive stages resulted in the most efficient use of limited water.Irrigating to replenish soil water to 80% of field capacity was found suitable for both current and future climates. Groundwater overdraft from the Ogallala Aquifer for irrigation use and anticipated climate change impacts pose major threats to the sustainability of agriculture in the Texas High Plains (THP) region. In this study, the DSSAT-CSM-CERES-Sorghum model was used to simulate climate change impacts on grain sorghum production under full and deficit irrigation strategies and suggest optimal deficit irrigation strategies. Two irrigation strategies were designed based on (1) crop growth stage and (2) soil water deficit. For the first strategy, seven deficit irrigation scenarios and one full irrigation scenario were simulated: three scenarios with a single 100 mm irrigation scheduled between panicle initiation and boot (T1), between boot and early grain filling (T2), and between early and late grain filling (T3) growth stages; three 200 mm irrigation treatments with combinations of T1 and T2 (T4), T1 and T3 (T5), and T2 and T3 (T6); one 300 mm irrigation scenario (T7) that was a combination of T1, T2, and T3; and a full irrigation scenario (T8) in which irrigation was applied throughout the growing season to maintain at least 50% of plant-available water in the top 30 cm soil profile. For the second strategy, the irrigation schedule obtained from auto-irrigation (T8) was mimicked to create a full irrigation scenario (I100) and six deficit irrigation scenarios. In the deficit irrigation scenarios, water was applied on the same dates as scenario I100; however, the irrigation amounts of scenario I100 were reduced by 10%, 20%, 30%, 40%, 50%, and 60% to create deficit irrigation scenarios I90, I80, I70, I60, I50, and I40, respectively. Projected climate forcings were drawn from nine global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and RCP 8.5). Climate change analysis indicated that grain sorghum yield under full irrigation was expected to be reduced by 5% by mid-century (2036 to 2065) and by 15% by late-century (2066 to 2095) under RCP 8.5 compared to the baseline period (1976 to 2005). Simulated future irrigation water demand of grain sorghum was reduced due to the shorter growing season and improved dry matter- and yield-transpiration productivity, likely due to CO2 fertilization. Based on the simulated grain sorghum yield and irrigation water use efficiency, the most efficient use of limited irrigation was achieved by applying irrigation during the early reproductive stages of grain sorghum (panicle initiation through early grain filling). A 20% deficit irrigation scenario was found to be optimal for current and future conditions because it was more water use efficient than full irrigation with a minor yield reduction of <11%. In summary, these results indicated that strategic planning of when and how much to irrigate could help in getting the most out of limited irrigation. Keywords: CERES-Sorghum, Critical growth stages, Crop yield, Global climate model, Irrigation demand, Soil water depletion.


2021 ◽  
Author(s):  
Zoe Linder ◽  
Annelie Holzkämper ◽  
Massimiliano Zappa

<p>According to climate projections, rainfall rates and summer discharge from snow and glacier melt in Switzerland are expected to decrease by the end of the 21<sup>st</sup> century. This may lead to limited water availability for irrigation in agriculture in the future and high irrigation water demand especially during the summer months, which consequently enhances the problem of water scarcity for agriculture.</p><p>These predicted changes make the identification of timescales, frequencies, and geographical pattern of water scarcity a fundamental concern for future agricultural practices. Therefore, the main aim of this work is to investigate climate change impacts on water resources and the consequences on irrigation water supply in Switzerland. By creating maps of the geographic distribution of natural water resources available according to climate projections until the end of the 21<sup>st</sup> century using ArcGIS, the severity of water scarcity is quantified, while regional differences and the most affected areas can be revealed.</p><p>The expected outcomes are increasing days of water scarcity per year over the course of the 21<sup>st</sup> century, while those regions furthest away from melt water sources and lakes will be most affected. This in turn might lead to restricted irrigation potential, making more efficient water use indispensable in Switzerland, while creating general shifts to more water-resistant crops in Swiss agricultural practices.</p>


Sign in / Sign up

Export Citation Format

Share Document