Assessment of the impact of future climate change on maize yield and water use efficiency in agro‐pastoral ecotone of Northwestern China

Author(s):  
Zhibo Han ◽  
Baoqing Zhang ◽  
Lixiao Yang ◽  
Chansheng He
Időjárás ◽  
2019 ◽  
Vol 123 (4) ◽  
pp. 469-486
Author(s):  
Milena Jancic Tovjanin ◽  
Vladimir Djurdjevic ◽  
Borivoj Pejic ◽  
Nebojsa Novkovic ◽  
Beba Mutavdzic ◽  
...  

2020 ◽  
Author(s):  
Nicola Damiano ◽  
Chiara Cirillo ◽  
Giovanna Battipaglia ◽  
Chiara Amitrano ◽  
Antonio Pannico ◽  
...  

<p>In the Mediterranean region, climate change is intensifying the need to improve the resource use efficiency of crops (e.g. water use efficiency) and to increase yield, quality and stability of productions, especially in high profitability and vulnerable crops as grapevine. In a climate change scenario, with increasing temperature and frequency of extreme events, such as prolonged periods of drought, the improvement of knowledge about the plasticity of morpho-functional traits in vines, becomes pivotal. Only a deep knowledge of vine responses to environmental constraints can help achieving the correct management of cultivation factors towards sustainability.</p><p>The objective of this study is to apply a multidisciplinary approach for monitoring the resource use efficiency and resource allocation during vine development up to wine production. This general objective will be pursued by analysing the complex relationships between parameters in the continuum environment/plant/wine with specific emphasis on the influence of water availability on the vine, grapes, must and finally wine, in order to relate climate, plant water status and oenological characteristics.</p><p>The study was conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Falanghina’ located in southern Italy (La Guardiense farm, Guardia Sanframondi, Benevento, Campania region).</p><p>The vineyard performance was monitored on the basis of several morphological and eco-physiological parameters, measured in the main phenological phases, including: plant architecture, fertility, leaf anatomical traits, photosynthetic efficiency, leaf gas exchanges, nutritional status, berry and must quality. Water use efficiency was estimated through the analysis of anatomical and stable isotope traits (linked with hydraulic and resource efficiency parameters) from tree-ring series and leaf samples. Stable isotopes were also analysed in the must, in order to check the occurrence of an isotopic signature from the plants towards the must.</p><p>The approach proved to be promising for achieving a comprehensive understanding on the impact of environmental constraints not only on plant behaviour, but also on the characteristics of the oenological products, furnishing at the same time a promising tool to reconstruct vine status from the isotopic trace in the must.</p><p> </p>


2013 ◽  
Vol 10 (1) ◽  
pp. 67-101 ◽  
Author(s):  
M. Konar ◽  
Z. Hussein ◽  
N. Hanasaki ◽  
D. L. Mauzerall ◽  
I. Rodriguez-Iturbe

Abstract. The international trade of food commodities links water and food systems, with important implications for both water and food security. The embodied water resources associated with food trade are referred to as "virtual water trade". We present the first study of the impact of climate change on global virtual water trade flows and associated savings for the year 2030. In order to project virtual water trade under climate change, it is essential to obtain projections of both bilateral crop trade and the water-use efficiency of crops in each country of production. We use the Global Trade Analysis Project (GTAP) to estimate bilateral crop trade flows under changes in agricultural productivity. We use the H08 global hydrologic model to estimate the water-use efficiency of each crop in each country of production and to transform crop flows into virtual water flows. We find that the total volume of virtual water trade is likely to go down under climate change. However, the staple food trade is projected to save more water across most climate impact scenarios, largely because the wheat trade re-organizes into a more water-efficient structure. These findings indicate that trade may be an adaptation measure to climate change with ramifications for policy.


2012 ◽  
Vol 63 (10) ◽  
pp. 974 ◽  
Author(s):  
Davide Cammarano ◽  
Bruno Basso ◽  
Lydia Stefanova ◽  
Peter Grace

Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multi-model climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (0°C, 1°C, 2°C, and 3°C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT 4.5, using 50 years of daily weather data. We found that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.


2016 ◽  
Vol 14 (4) ◽  
pp. e1204 ◽  
Author(s):  
Mohammad Hassanli ◽  
Hamed Ebrahimian

Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1218
Author(s):  
Michael A. Kock

Plant related innovations are critical to enable of food security and mitigate climate change. New breeding technologies (NBTs) based on emerging genome editing technologies like CRISPR/Cas will facilitate “breeding-by-editing” and enable complex breeding targets—like climate resilience or water use efficiency—in shorter time and at lower costs. However, NBTs will also lead to an unprecedented patent complexity. This paper discusses implications and potential solutions for open innovation models.


Sign in / Sign up

Export Citation Format

Share Document