scholarly journals Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

2016 ◽  
Vol 14 (4) ◽  
pp. e1204 ◽  
Author(s):  
Mohammad Hassanli ◽  
Hamed Ebrahimian

Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

2003 ◽  
Vol 48 (7) ◽  
pp. 191-196 ◽  
Author(s):  
P.J. Goyne ◽  
G.T. McIntyre

The Cotton and Grains Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growersÕ perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.


1983 ◽  
Vol 100 (3) ◽  
pp. 731-734
Author(s):  
R. De ◽  
Y. Y. Rao ◽  
M. Ikramullah ◽  
L. G. Giri Rao

SUMMARYMaize yield was increased by the application of organic mulch (6 t/ha). Mulched plots treated with any of the antitranspirants (kaolin or alachlor) and receiving two or four irrigations yielded as much as untreated plots receiving four or six irrigations. Cob length, number of grains and grain weight of maize were increased by mulching and by the transpiration suppressants. Irrigation water-use efficiency was improved by evapotranspiration control treatments.


Author(s):  
Willian F. de Almeida ◽  
Vital P. da S. Paz ◽  
Ana P. C. de Jesus ◽  
Jucicléia S. da Silva ◽  
Karoline S. Gonçalves ◽  
...  

ABSTRACT In view of the imminent need for efficient water use and the search for adequate management techniques to reduce the effect of salinity on plants, a study was conducted to evaluate the effect of continuous and pulses drip irrigation with saline water on green bean yield and water use efficiency. The experiment was conducted in a greenhouse, in a completely randomized design, with treatments distributed in a 2 x 5 factorial arrangement. The first factor was type of drip irrigation, i.e., continuous or pulse, while the second factor was the levels of water salinity (electrical conductivity of 0.3, 1.5, 2.5, 3.5 and 4.5 dS m-1), with five replicates, and two plants per replicate, totaling 50 experimental units. The following variables were analysed: production of pods per pot, water use efficiency and the electrical conductivity of the soil saturation extract. According to the results, significant effect of the interaction and decreasing linear fits in response to salinity occurred for all variables studied. It was possible to note that pulse drip irrigation reduced the negative effects of irrigation water salinity on green bean yield and increased water use efficiency.


Author(s):  
G.N. Ward ◽  
J.L. Jacobs ◽  
F.R. Mckenzie

The irrigation of perennial pasture and the growing of dryland summer forage crops are two common methods of increasing the supply of and nutritional value of home grown forage on dairy farms in south west Victoria. In recent years the amount and reliability of supply of irrigation water to dairy farmers in the region has decreased through drought and increased regulation. Over the last 8 years a series of studies have been conducted to investigate the most efficient use of unreliable irrigation water supplies. Perennial pasture was found to be particularly sensitive in terms of reduced productivity and water use efficiency (WUE) to poor irrigation practices. However, under good management and reliable water supply it is still likely to be the easiest and most economically efficient irrigation system. Irrigated summer forage crops were found to have a higher WUE, but responses were variable due to year to year seasonal differences. These crops were found to be more tolerant of poor irrigation management and were able to take advantage of reduced amounts of irrigation water and one off irrigations. Keywords: brassicas, forage crops, irrigated pasture, irrigation, water use efficiency.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2019 ◽  
Vol 7 (3) ◽  
pp. 322-334 ◽  
Author(s):  
Guoqiang Zhang ◽  
Dongping Shen ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Xiuliang Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document