High‐throughput phenotyping of soybean genotypes under base saturation stress conditions

Author(s):  
Sinomar Moreira Andrade ◽  
Larissa Pereira Ribeiro Teodoro ◽  
Fábio Henrique Rojo Baio ◽  
Cid Naudi Silva Campos ◽  
Cassiano Garcia Roque ◽  
...  

Author(s):  
Guofang Zhang ◽  
Jinzhi Zhou ◽  
Yan Peng ◽  
Zengdong Tan ◽  
Yuting Zhang ◽  
...  

Salt stress is a major limiting factor that severely affects the survival and growth of crops. It is important to understand the salt tolerance ability of Brassica napus and explore the underlying related genetic resources. We used a high-throughput phenotyping platform to quantify 2,111 image-based traits (i-traits) of a natural population under 3 different salt stress conditions and an intervarietal substitution line (ISL) population under 9 different stress conditions to monitor and evaluate the salt stress tolerance of B. napus over time. We finally identified 928 high-quality i-traits associated with the salt stress tolerance of B. napus. Moreover, we mapped the salt stress-related loci in the natural population via a genome-wide association study (GWAS) and performed a linkage analysis associated with the ISL population, respectively. The results revealed 234 candidate genes associated with salt stress response, and two novel candidate genes, BnCKX5 and BnERF3, were experimentally verified to regulate the salt stress tolerance of B. napus. This study demonstrates the feasibility of using high-throughput phenotyping-based QTL mapping to accurately and comprehensively quantify i-traits associated with B. napus. The mapped loci could be used for genomics-assisted breeding to genetically improve the salt stress tolerance of B. napus.



2011 ◽  
Author(s):  
E. Kyzar ◽  
S. Gaikwad ◽  
M. Pham ◽  
J. Green ◽  
A. Roth ◽  
...  


2021 ◽  
Author(s):  
Peng Song ◽  
Jinglu Wang ◽  
Xinyu Guo ◽  
Wanneng Yang ◽  
Chunjiang Zhao




2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.



Author(s):  
Marcus Vinicius Vieira Borges ◽  
Janielle de Oliveira Garcia ◽  
Tays Silva Batista ◽  
Alexsandra Nogueira Martins Silva ◽  
Fabio Henrique Rojo Baio ◽  
...  

AbstractIn forest modeling to estimate the volume of wood, artificial intelligence has been shown to be quite efficient, especially using artificial neural networks (ANNs). Here we tested whether diameter at breast height (DBH) and the total plant height (Ht) of eucalyptus can be predicted at the stand level using spectral bands measured by an unmanned aerial vehicle (UAV) multispectral sensor and vegetation indices. To do so, using the data obtained by the UAV as input variables, we tested different configurations (number of hidden layers and number of neurons in each layer) of ANNs for predicting DBH and Ht at stand level for different Eucalyptus species. The experimental design was randomized blocks with four replicates, with 20 trees in each experimental plot. The treatments comprised five Eucalyptus species (E. camaldulensis, E. uroplylla, E. saligna, E. grandis, and E. urograndis) and Corymbria citriodora. DBH and Ht for each plot at the stand level were measured seven times in separate overflights by the UAV, so that the multispectral sensor could obtain spectral bands to calculate vegetation indices (VIs). ANNs were then constructed using spectral bands and VIs as input layers, in addition to the categorical variable (species), to predict DBH and Ht at the stand level simultaneously. This report represents one of the first applications of high-throughput phenotyping for plant size traits in Eucalyptus species. In general, ANNs containing three hidden layers gave better statistical performance (higher estimated r, lower estimated root mean squared error–RMSE) due to their greater capacity for self-learning. Among these ANNs, the best contained eight neurons in the first layer, seven in the second, and five in the third (8 − 7 − 5). The results reported here reveal the potential of using the generated models to perform accurate forest inventories based on spectral bands and VIs obtained with a UAV multispectral sensor and ANNs, reducing labor and time.



2016 ◽  
Vol 118 (4) ◽  
pp. 655-665 ◽  
Author(s):  
C. L. Thomas ◽  
N. S. Graham ◽  
R. Hayden ◽  
M. C. Meacham ◽  
K. Neugebauer ◽  
...  




2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhou Tang ◽  
Atit Parajuli ◽  
Chunpeng James Chen ◽  
Yang Hu ◽  
Samuel Revolinski ◽  
...  

AbstractAlfalfa is the most widely cultivated forage legume, with approximately 30 million hectares planted worldwide. Genetic improvements in alfalfa have been highly successful in developing cultivars with exceptional winter hardiness and disease resistance traits. However, genetic improvements have been limited for complex economically important traits such as biomass. One of the major bottlenecks is the labor-intensive phenotyping burden for biomass selection. In this study, we employed two alfalfa fields to pave a path to overcome the challenge by using UAV images with fully automatic field plot segmentation for high-throughput phenotyping. The first field was used to develop the prediction model and the second field to validate the predictions. The first and second fields had 808 and 1025 plots, respectively. The first field had three harvests with biomass measured in May, July, and September of 2019. The second had one harvest with biomass measured in September of 2019. These two fields were imaged one day before harvesting with a DJI Phantom 4 pro UAV carrying an additional Sentera multispectral camera. Alfalfa plot images were extracted by GRID software to quantify vegetative area based on the Normalized Difference Vegetation Index. The prediction model developed from the first field explained 50–70% (R Square) of biomass variation in the second field by incorporating four features from UAV images: vegetative area, plant height, Normalized Green–Red Difference Index, and Normalized Difference Red Edge Index. This result suggests that UAV-based, high-throughput phenotyping could be used to improve the efficiency of the biomass selection process in alfalfa breeding programs.



Sign in / Sign up

Export Citation Format

Share Document