scholarly journals Can nutrient‐utilization efficiency be improved by reduced fertilizer supply to maize plants treated with the plant growth regulator paclobutrazol?

Author(s):  
Birgit W. Hütsch ◽  
Sven Schubert
Author(s):  
Victoria Otie ◽  
AN Ping ◽  
Ali Ibrahim ◽  
Egrinya Eneji

Aim: To assess the pleiotropic role of a plant growth regulator, commercially identified as brassinolide (BR) in mitigating waterlogging stress imposed on maize. Study Design: A factorial combination of two maize varieties [Ikom White (IKW) and Oba-98], two BR levels (0 and 250 ml) and two waterlogging stages of maize growth [control (WL0) and seedling stage (WL1)], arranged as a split-split plot in a randomized complete block design with three replications was used. Place and Duration of Study: Akpabuyo Local Government Area, Cross River State-Nigeria. A two-year field experiment was conducted during the dry seasons of December 2016 and December 2017. Methodology: Waterlogging test was conducted on plots by demarcating them with 3.6 by 1.7 m metal sheets buried to a depth of 60 cm to prevent lateral soil-water movement. Two maize seeds were sown at 25 cm within and 75 cm between rows. The BR (250 ml) was sprayed foliar at 21 DAS. The non-waterlogging plots served as control. Observations were made on growth and yield variables as well as the plant's physiological traits. Results: Waterlogging significantly reduced the growth attributes of maize and increased (p≤0.05) the leaf moisture content. The photosynthetically active radiation on maize plants was substantially reduced (p≤0.05) by the waterlogging stress. Dry matter yield (DMY) and nutrient uptake in the leaves, stems and grains were reduced (p≤0.05) at both silking and at harvest. The effect of the BR was greater in Oba-98 with higher nutrient contents, radiation absorption, dry matter and grain yields than IKW. Conclusion: Treatment of maize plants with BR could induce some tolerance of field waterlogging. Thus, for optimum efficiency in maize production under stressed soil condition of waterlogging, it is recommended that the foliar spray of BR at the 250 ml per plant rate be considered.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1453
Author(s):  
Shiguo Gu ◽  
Fei Lian ◽  
Hanyue Yang ◽  
Yaru Han ◽  
Wei Zhang ◽  
...  

It is well known that carbon-based organic fertilizer can effectively promote crop growth and improve nutrient utilization efficiency. However, little is known about the effect of microorganisms on the nutrient availability of carbon-based organic fertilizer. To elucidate the contribution of microorganisms to the agricultural benefit of colloidal biochar-based fertilizer, a 5-month pot experiment was conducted to study the effect of different combinations of Methyltrophic bacillus, colloidal biochar, and organic fertilizer on physical–chemical properties of soil, plant growth, physiological-biochemical reactions, yield, and quality of tomato. The results show that the addition of Methyltrophic bacillus effectively promoted the availability of soil nutrients (such as nitrate nitrogen and available potassium) and increased soil cation exchange capacity; meanwhile, it significantly increased the content of chlorophyll-a (9.42–27.41%) and promoted the net photosynthetic rate (10.86–13.73%) and biomass of tomato fruit (17.84–26.33%). The contents of lycopene, vitamin C, total sugar, and soluble sugar in the fruits treated by the ternary combination of Methyltrophic bacillus, colloidal biochar, and organic fertilizer increased by 58.40%, 46.53%, 29.45%, and 26.65%, respectively. The above results demonstrate that the addition of beneficial microorganisms could further improve the performance of biochar-based fertilizer on plant growth, yield, and fruit quality of tomato. This information provides evidence for the promising performance of microorganism-supported biochar organic fertilizer in agricultural applications.


2007 ◽  
Vol 35 (2) ◽  
pp. 993-996 ◽  
Author(s):  
Sulejman Redžepović ◽  
Sanja Sikora ◽  
Josip Čolo ◽  
Mihaela Blažinkov ◽  
Marija Pecina

2004 ◽  
Vol 44 (3) ◽  
pp. 343 ◽  
Author(s):  
A. C. Rath ◽  
A. J. Prentice

The effects ReTain Plant Growth Regulator (830 g in 1000 L water/ha) applied to a commercial block of 'Arctic Snow' nectarines 7 days before the first harvest was assessed in relation to harvest delay, fruit size, fruit quality (flesh firmness and brix), as well as the quality of the fruit following export to Taiwan. The untreated block (0.87 ha) and the ReTain-treated block (1.0 ha) were harvested according to the orchard's standard maturation criteria of background colour, size and percent blush colour. Based on picking schedules, the maturation of the ReTain block was delayed by 2.75 days (P<0.05). The fruit continued to grow during this delay and resulted in a 12.3% increase in yield and an increase of 393 packed cartons/ha. There were more (P<0.001) cartons of ReTain-treated fruit packed in grade sizes 69–78 mm diameter and less of smaller size classes (51–66 mm) compared with untreated fruit. The increase in both the number of cartons of class 1 fruit and fruit size on the ReTain block resulted in a Return on Investment (ROI) of 14.7 : 1 with an additional net return of AU$17 655/ha over the untreated block. There was a correlation between fruit size and flesh firmness with larger fruit being firmer than smaller fruit (P<0.001), however, packed ReTain-treated fruit was 3.2 N firmer on average (P<0.001) than packed untreated fruit for all size grades and from all harvests and packs. Brix levels increased (P<0.001) with fruit size but there was no difference (P = 0.568) between ReTain-treated fruit and untreated fruit. Two containers of fruit (early and late picks) were exported to Taiwan. The containers held a temperature of 0.5–2.0°C for the 14–15 day transit time from Australia to Taiwan. ReTain-treated fruit in both containers was 1.7 N firmer (P = 0.022) than untreated fruit upon arrival in Taiwan. After ambient storage (23°C) of fruit from container 1 for 45 h, fruit firmness declined (P<0.001) from an average of 65.7 to 43.2 N and there was no difference (P = 0.826) between treated or untreated fruit. It is concluded that ReTain application to 'Arctic Snow' nectarines can increase financial returns to growers through increased fruit size and quality benefits as well as maintain a higher flesh firmness following export.


Crop Science ◽  
2018 ◽  
Vol 58 (4) ◽  
pp. 1801-1807 ◽  
Author(s):  
E. H. Reasor ◽  
J. T. Brosnan ◽  
J. P. Kerns ◽  
W. J. Hutchens ◽  
D. R. Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document