Low‐temperature stress during the flowering period alters the source–sink relationship and grain quality in field‐grown late‐season rice

Author(s):  
Min Huang ◽  
Jialin Cao ◽  
Yu Liu ◽  
Mingyu Zhang ◽  
Liqin Hu ◽  
...  
2007 ◽  
Vol 34 (4) ◽  
pp. 340-345
Author(s):  
S. V. Klimov ◽  
E. A. Burakhanova ◽  
I. M. Dubinina ◽  
G. P. Alieva ◽  
E. B. Sal’nikova ◽  
...  

2019 ◽  
Vol 55 (6) ◽  
pp. 843-848 ◽  
Author(s):  
Min Huang ◽  
Shengliang Fang ◽  
Shuanglü Shan ◽  
Yingbin Zou

AbstractThe development of mechanised large-scale farming has led to changes in rice production systems. Increases in time of farming operations often occur under large-scale farming conditions, which can lead to delayed transplanting (DTP). In this study, field experiments were conducted in the late rice-growing season in 2016 and 2017 to compare the growth stages, growing-season temperature and yield attributes between normal transplanting with 15- to 20-day-old seedlings and DTP with 30-day-old seedlings of two rice cultivars. DTP resulted in 6- and 12-day delays in heading stage for both cultivars in 2016 and 2017, respectively. As a consequence, low temperature stress occurred at anthesis under DTP in both years, which led to significantly reduced spikelet filling and grain yield under DTP for both cultivars. These results confirm that DTP can reduce spikelet filling and grain yield due to low temperature stress at anthesis in machine-transplanted late-season rice. This finding highlights that greater efforts should be made to develop high-yielding short-duration rice cultivars to meet the development of mechanised large-scale rice farming.


2019 ◽  
Vol 26 (2) ◽  
pp. 280
Author(s):  
Penglei JIANG ◽  
Yingdi SHI ◽  
Yanwen HOU ◽  
Bingshe HAN ◽  
Junfang ZHANG

2014 ◽  
Vol 39 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Yu-zhi QIN ◽  
Jue CHEN ◽  
Zhen XING ◽  
Chang-zheng HE ◽  
Xing-yao XIONG

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


Sign in / Sign up

Export Citation Format

Share Document