Cold Sintered Na 2 WO 4 ‐Ni 0.2 Cu 0.2 Zn 0.6 Fe 2 O 4 Ceramics with Matched Permittivity and Permeability for Miniaturized Antenna

Author(s):  
Naichao Chen ◽  
Bin Xiao ◽  
Xinwei Xu ◽  
Tao Sun ◽  
Fei Jin ◽  
...  
2021 ◽  
Vol 11 (9) ◽  
pp. 3844
Author(s):  
Konstantinos P. Prokopidis ◽  
Dimitrios C. Zografopoulos

A novel finite-difference time-domain formulation for the modeling of general anisotropic dispersive media is introduced in this work. The method accounts for fully anisotropic electric or magnetic materials with all elements of the permittivity and permeability tensors being non-zero. In addition, each element shows an arbitrary frequency dispersion described by the complex-conjugate pole–residue pairs model. The efficiency of the technique is demonstrated in benchmark numerical examples involving electromagnetic wave propagation through magnetized plasma, nematic liquid crystals and ferrites.


2015 ◽  
Vol 7 (3-4) ◽  
pp. 369-377 ◽  
Author(s):  
Alex Pacini ◽  
Alessandra Costanzo ◽  
Diego Masotti

An increasing interest is arising in developing miniaturized antennas in the microwave range. However, even when the adopted antennas dimensions are small compared with the wavelength, radiation performances have to be preserved to keep the system-operating conditions. For this purpose, magneto-dielectric materials are currently exploited as promising substrates, which allows us to reduce antenna dimensions by exploiting both relative permittivity and permeability. In this paper, we address generic antennas in resonant conditions and we develop a general theoretical approach, not based on simplified equivalent models, to establish topologies most suitable for exploiting high permeability and/or high-permittivity substrates, for miniaturization purposes. A novel definition of the region pertaining to the antenna near-field and of the associated field strength is proposed. It is then showed that radiation efficiency and bandwidth can be preserved only by a selected combinations of antenna topologies and substrate characteristics. Indeed, by the proposed independent approach, we confirm that non-dispersive magneto-dielectric materials with relative permeability greater than unit, can be efficiently adopted only by antennas that are mainly represented by equivalent magnetic sources. Conversely, if equivalent electric sources are involved, the antenna performances are significantly degraded. The theoretical results are validated by full-wave numerical simulations of reference topologies.


Frequenz ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Maksud Alam ◽  
Amber Khan ◽  
Mainuddin ◽  
Binod Kumar Kanaujia ◽  
Mirza Tariq Beg

AbstractIn this paper a coplanar waveguide feed (CPW) monopole antenna backed with artificial magnetic conductor (AMC) structure for efficient radiation has been presented for off-body wearable applications. A split ring resonator (SRR) having thiner and longer lines to produce higher inductance and six splits with smaller gaps for high capacitance have been placed underneath CPW fed monopole to achieve resonance mode at a lower frequency. Higher values of inductance and capacitance produce resonant modes at relatively lower frequencies resulting in highly miniaturized antenna. The desired −10dB S11 bandwidth has been optimized firstly, by tuning/optimizing flow of surface currents with the help of several slots/slits and later by realizing AMC reflector with the help of full ground backed foam. The proposed antenna covers 2.45 GHz industrial, scientific and medical (ISM) band body area network (BAN) application and posses good front to back ratio (FBR) and thereby low and acceptable values of specific absorption rate (SAR). The proposed antenna has been designed and simulated using Ansys high frequency structured simulator and tested using vector network analyzer and anechoic chamber. The simulated and measured results well agree with each other.


Author(s):  
Mike Köhler ◽  
Jürgen Hasch ◽  
Hans Ludwig Blöcher ◽  
Lorenz-Peter Schmidt

Radar sensors are used widely in modern driver assistance systems. Available sensors nowadays often operate in the 77 GHz band and can accurately provide distance, velocity, and angle information about remote objects. Increasing the operation frequency allows improving the angular resolution and accuracy. In this paper, the technical feasibility to move the operation frequency beyond 100 GHz is discussed, by investigating dielectric properties of radome materials, the attenuation of rain and atmosphere, radar cross-section behavior, active circuits technology, and frequency regulation issues. Moreover, a miniaturized antenna at 150 GHz is presented to demonstrate the possibilities of high-resolution radar for cars.


Sign in / Sign up

Export Citation Format

Share Document