scholarly journals Normothermic machine perfusion attenuates hepatic ischaemia‐reperfusion injury by inhibiting CIRP‐mediated oxidative stress and mitochondrial fission

Author(s):  
Wenyan Liu ◽  
Yang Fan ◽  
Hongfan Ding ◽  
Dan Han ◽  
Yang Yan ◽  
...  
2019 ◽  
Author(s):  
Emily R Thompson ◽  
Lucy Bates ◽  
Ibrahim K Ibrahim ◽  
Avinash Sewpaul ◽  
Ben Stenberg ◽  
...  

AbstractEx-vivo normothermic machine perfusion (NMP) of donor kidneys prior to transplantation provides a platform for direct delivery of cellular therapeutics to optimise organ quality prior to transplantation. Multipotent Adult Progenitor Cells (MAPC®) possess potent immunomodulatory properties which could prove beneficial in minimising subsequent ischaemia reperfusion injury. We investigated the potential reconditioning capability of MAPC cells in kidney NMP.MethodsPairs (5) of human kidneys from the same donor were simultaneously perfused for 7 hours. The right or left kidney was randomly allocated to receive MAPC treatment. Serial samples of perfusate, urine and tissue biopsies were taken for comparison with the control paired kidney.ResultsMAPC-treated kidneys demonstrated improved urine output (p<0.01), decreased expression of the kidney injury biomarker NGAL (p<0.01), improved microvascular perfusion on contrast enhanced ultrasound (cortex p<0.05, medulla p<0.01), downregulation of IL-1β (p<0.05) and upregulation of IL-10 (p<0.05) and Indolamine-2, 3-dioxygenase (p<0.05). A mouse model of intraperitoneal chemotaxis demonstrated decreased neutrophil recruitment when stimulated with perfusate from MAPC-treated kidneys (p<0.01). Immunofluorescence revealed pre-labelled MAPC cells home to the perivascular space in the kidneys during NMP. MAPC therapy was not associated with detrimental physiological or embolic events.ConclusionWe report the first successful delivery of cellular therapy to a kidney during NMP. Kidneys treated with MAPC cells demonstrate improvement in clinically relevant functional parameters and injury biomarkers. This novel method of cell therapy delivery provides an exciting opportunity to recondition organs prior to clinical transplantation.One Sentence SummaryEx-vivo reconditioning of human kidneys using Multipotent Adult Progenitor Cell therapy delivered during normothermic machine perfusion.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
E Irwin ◽  
E Thompson ◽  
S Tingle ◽  
P Ezuma ◽  
L Matthews ◽  
...  

Abstract Introduction Ischaemia reperfusion injury (IRI) is an unavoidable, significant consequence of renal transplantation. MicroRNAs are small, non-coding RNA molecules that regulate multiple downstream mRNA targets. MiRNA-21-5p and miRNA-24-3p have been previously implicated in IRI. Antisense oligonucleotides (ASOs) block specific microRNAs, with previous work by our group demonstrating their delivery to kidneys using normothermic machine perfusion. Imaging these kidneys revealed ASO localisation around proximal tubule epithelial cells (PTECs). This project aimed to characterise ASO blockade against miRNA-21-5p and miRNA-24-3p in PTECs. Method HKC8 cells, a human PTEC cell line, were used throughout these experiments. Cells were placed in a hypoxic incubator for 24hrs, followed by 6hrs of reoxygenation to mimic IRI. HKC8s were transfected with ASOs using lipofectamine. RT-qPCR and Western Blots were used to evaluate expression of antioxidant targets, SOD2 and HMOX1. Result MiRNA-21-5p and miRNA-24-3p levels were high throughout hypoxia and reoxygenation. Single blockade with anti-miRNA-21-5p resulted in a significant increase in its downstream target SOD2 (P&lt;0.05). Anti-miRNA-24-3p treatment resulted in no change in either of its downstream targets, HMOX1 or SOD2. This was reflected in the failure of dual blockade to produce a synergistic effect on the shared target, SOD2. Conclusion Anti-miRNA-21-5p results in a significant increase of SOD2, which is well characterised as protective during IRI. Anti-miRNA-24-3p appears to have no effect on PTECs, contrary to previous work in endothelial cells, perhaps suggesting a cell specific response of microRNAs. Normothermic machine perfusion could be used to deliver dual ASOs; allowing simultaneous targeting of different kidney cell types. Take-home message The delivery of anti-miRNA-21-5p therapy pre-transplant, using normothermic machine perfusion, has the potential to reduce ischaemia reperfusion injury and improve kidney transplant outcomes.


2021 ◽  
pp. 1-9
Author(s):  
Hongmei Zhao ◽  
Yun Qiu ◽  
Yichen Wu ◽  
Hong Sun ◽  
Sumin Gao

<b><i>Introduction/Aims:</i></b> Hydrogen sulfide (H<sub>2</sub>S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H<sub>2</sub>S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. <b><i>Methods:</i></b> Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target ­protein after renal IRI. <b><i>Results:</i></b> The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. <b><i>Conclusions:</i></b> GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.


2021 ◽  
Author(s):  
Siavash Beikoghli Kalkhoran ◽  
Janos Kriston-Vizi ◽  
Sauri Hernandez-Resendiz ◽  
Gustavo E Crespo-Avilan ◽  
Ayeshah A Rosdah ◽  
...  

Abstract Aims Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. Methods and results Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P&lt;0.001). Conclusion We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


2020 ◽  
Vol 9 (4) ◽  
pp. 1046 ◽  
Author(s):  
Fungai Dengu ◽  
Syed Hussain Abbas ◽  
Georg Ebeling ◽  
David Nasralla

Liver transplantation is increasingly dependent on the use of extended criteria donors (ECD) to increase the organ donor pool and address rising demand. This has necessitated the adoption of innovative technologies and strategies to protect these higher-risk grafts from the deleterious effects of traditional preservation and ischaemia reperfusion injury (IRI). The advent of normothermic machine perfusion (NMP) and rapid growth in the clinical adoption of this technology has accelerated efforts to utilise NMP as a platform for therapeutic intervention to optimise donor livers. In this review we will explore the emerging preclinical data related to ameliorating the effects of IRI, protecting the microcirculation and reducing the immunogenicity of donor organs during NMP. Exploiting the window of opportunity afforded by NMP, whereby the liver can be continuously supported and functionally assessed while therapies are directly delivered during the preservation period, has clear logistical and theoretical advantages over current preservation methods. The clinical translation of many of the therapeutic agents and strategies we will describe is becoming more feasible with widespread adaptation of NMP devices and rapid advances in molecular biology and gene therapy, which have substantially improved the performance of these agents. The delivery of novel therapeutics during NMP represents one of the new frontiers in transplantation research and offers real potential for successfully tackling fundamental challenges in transplantation such as IRI.


Sign in / Sign up

Export Citation Format

Share Document