scholarly journals PC337: Enucleation and bone augmentation of the incisive canal prior to implant placement in atrophic maxilla

2018 ◽  
Vol 45 ◽  
pp. 472-473
2011 ◽  
Vol 37 (4) ◽  
pp. 463-471 ◽  
Author(s):  
Neophytos Demetriades ◽  
Jong il Park ◽  
Constantinos Laskarides

Abstract This clinical review is an evaluation of the effectiveness of the split ridge bone augmentation technique performed in the atrophic maxilla and mandible with buccolingual bony defects. The osseointegration success of implant placement in the area of split ridge bone augmentation is assessed and compared to implant success rates indicated in the literature. This evaluation includes 15 patients who were treated with alveolar split ridge bone augmentation at Tufts University School of Dental Medicine. During initial consultation, all patients were diagnosed with a buccolingual bone dimension of 3–5 mm on the edentulous alveolar crest. This bony buccolingual dimension was inadequate for placement of implants of desirable width and correct angulation as dictated by the prosthetic requirements. Crestal split augmentation technique involved a surgical osteotomy that was followed by alveolar crest split and augmentation after buccolingual bony plate expansion, prior to implantation. Implants were placed either immediately or 3 weeks after the initial augmentation. No fixation was used to stabilize the buccal bony cortex after the completion of the augmentation. All patients were placed on periodic follow-ups for a 24-month period postoperatively. Implant success was determined with the use of Buser's Criteria. In total, 33 implants were placed in 15 patients. The overall success rate of osseointegration of the endosseous implants placed in the area of split ridge bone augmentation was found to be 97%. One patient presented with facial bone resorption and implant mobility 4 months after the surgery. The implant was removed and the area was reconstructed with autogenous bone graft and later implanted with an endosseous implant. Our results indicate that the split crest bone augmentation technique is a valid reconstructive procedure that can be used to augment the buccolingual alveolar defect prior to implant placement providing good bone foundation for placement of implants with desirable width in favorable angulation. In comparison to traditional bone grafts techniques, crestal split ridge bone augmentation enables placement of dental implants immediately or 3 weeks after augmentation and eradicates the possible morbidity of the donor sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kwantae Noh ◽  
Daniel S. Thoma ◽  
Jung-Chul Park ◽  
Dong-Woon Lee ◽  
Seung-Yun Shin ◽  
...  

AbstractInformation regarding profilometric changes at a soft tissue level following implant placement with different protocols is insufficient. Therefore, this study aimed to comparatively investigate the profilometric tissue changes with respect to late implant placement following alveolar ridge preservation (LP/ARP) and early implantation (EP) in periodontally compromised non-molar extraction sites. Sixteen patients were randomly assigned to the following groups: implant placement 4 months post-ARP (group LP/ARP) and tooth extraction and implant placement 4–8 weeks post-extraction (group EP). Dental impressions were obtained immediately after final prosthesis insertion and at 3, 6, and 12 months. At the time of implant placement, bone augmentation was performed in the majority of the patients. Profilometric changes of the tissue contour were minimal between the final prosthesis insertion and 12 months in the mid-facial area (0.04–0.35 mm in group LP/ARP, 0.04–0.19 mm in group EP). The overall tissue volume increased in both groups (1.70 mm3 in group LP/ARP, 0.96 mm3 in group EP). In conclusion, LP/ARP and EP led to similar stability of the peri-implant tissue contour between the final prosthesis insertion and at 12 months. Moreover, the change of peri-implant tissue on the soft tissue level was minimal in both modalities.


2020 ◽  
Vol 99 (4) ◽  
pp. 402-409 ◽  
Author(s):  
G. Avila-Ortiz ◽  
M. Gubler ◽  
M. Romero-Bustillos ◽  
C.L. Nicholas ◽  
M.B. Zimmerman ◽  
...  

Alveolar ridge preservation (ARP) therapy is indicated to attenuate the physiologic resorptive events that occur as a consequence of tooth extraction with the purpose of facilitating tooth replacement therapy. This randomized controlled trial was primarily aimed at testing the efficacy of ARP as compared with unassisted socket healing. A secondary objective was to evaluate the effect that local phenotypic factors play in the volumetric reduction of the alveolar bone. A total of 53 subjects completed the study. Subjects were randomized into either the control group, which involved only tooth extraction (EXT n = 27), or the experimental group, which received ARP using a combination of socket grafting with a particulate bone allograft and socket sealing with a nonabsorbable membrane (dPTFE) following tooth extraction (ARP n = 26). A set of clinical, linear, volumetric, implant-related, and patient-reported outcomes were assessed during a 14-wk healing period. All linear bone assessments (horizontal, midbuccal, and midlingual reduction) revealed that ARP is superior to EXT. Likewise, volumetric bone resorption was significantly higher in the control group (mean ± SD: EXT = −15.83% ± 4.48%, ARP = −8.36% ± 3.81%, P < 0.0001). Linear regression analyses revealed that baseline buccal bone thickness is a strong predictor of alveolar bone resorption in both groups. Interestingly, no significant differences in terms of soft tissue contour change were observed between groups. Additional bone augmentation to facilitate implant placement in a prosthetically acceptable position was deemed necessary in 48.1% of the EXT sites and only 11.5% of the ARP sites ( P < 0.004). Assessment of perceived postoperative discomfort at each follow-up visit revealed a progressive decrease over time, which was comparable between groups. Although some extent of alveolar ridge remodeling occurred in both groups, ARP therapy was superior to EXT as it was more efficacious in the maintenance of alveolar bone and reduced the estimated need for additional bone augmentation at the time of implant placement (ClinicalTrials.gov NCT01794806).


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bruno Freitas Mello ◽  
Márcio de Carvalho Formiga ◽  
Luiz Fernando de Souza da Silva ◽  
Gustavo dos Santos Coura ◽  
Jamil Awad Shibli

The guided bone regeneration (GBR) technique has been used to achieve optimal bone volume augmentation and allow dental implant placement in atrophic maxilla and mandible, with predictable results and high survival rates. The use of bone substitutes has reduced the necessity of autogenous bone grafts, reducing the morbidity at the donor areas and thus improving the patients’ satisfaction and comfort. This clinical case report shows a clinical and histological evaluation of the bone tissue behavior, in a case that required the horizontal augmentation of the alveolar ridge, with the use of xenograft biomaterial and further dental implant placement. After six months of healing time, six implants were placed, and a bone biopsy was done. The histological analysis depicted some fragments of the xenograft bone graft, integrated with the new-formed bone tissue.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Carlo Maiorana ◽  
Susanna Ferrario ◽  
Pier Paolo Poli ◽  
Mattia Manfredini

The successful use of osseointegrated implants in the treatment of partial or complete edentulism requires a sufficient bone support. Whenever rehabilitation in atrophic edentulous areas is needed, bone augmentation procedures are recommended. The aim is to provide adequate amount of supporting bone to achieve a prosthetically guided implant placement. This in turn leads to functional and aesthetic improvements that can be maintained on the long term. Bone grafting of the atrophic site can be performed either prior to implant placement or at the time of implantation. Irrespective of the timing, bone augmentation by means of autogenous bone grafts is a reliable technique, as confirmed by several studies. On the other hand, long-term evidence on the use of autogenous chin block grafts in preprosthetic implant surgery is still scarce. Thus, the purpose of the present case is to report the 20-year clinical and radiological outcome of autogenous chin block grafts used to augment a bilateral defect due to agenesis of the upper lateral incisors for implant placement purposes.


2019 ◽  
Vol 8 (5) ◽  
pp. 616 ◽  
Author(s):  
Walid Aouini ◽  
France Lambert ◽  
Luc Vrielinck ◽  
Bart Vandenberghe

The aim of the study was to evaluate the proportion of patients recommended for full-arch mandibular restoration that would be eligible for treatment with a recently developed premanufactured full-arch prosthesis (Trefoil™, Nobel Biocare) based on the morphology of their lower jaw. Anonymized cone beam computed tomography (CBCT) data from 100 partially and fully edentulous patients referred for full-arch mandibular restoration were retrospectively collected from an imaging center database. Using custom-built software, CBCTs of mandibles were registered to a reference CBCT of a patient treated previously with a premanufactured full-arch prosthesis to determine if patients had adequate horizontal width and vertical height for implant placement. Bone height and thickness around simulated implants and distances to the incisive canal were evaluated. Mandibular arch width and semi-automated volume calculations were also performed. Using the system-specific 5.0 mm diameter implants with lengths of 13 and 11.5 mm, 85% and 86% of patients, respectively, were eligible for treatment with the standardized prosthesis. Eligibility was higher for men than women (odds ratio = 3.9, p = 0.045) due to increased bone volume. Based on mandibular morphology, our results suggest that the standardized treatment concept could serve a large percentage of patients with edentulous mandibles or failing dentition in the mandible.


Sign in / Sign up

Export Citation Format

Share Document