scholarly journals Combined effect of sodium–glucose cotransporter 2 and dipeptidyl peptidase‐4 inhibitors for diabetic kidney disease

2019 ◽  
Vol 11 (1) ◽  
pp. 22-24
Author(s):  
Shin‐ichi Araki
2021 ◽  
Author(s):  
Rodrigo Daza-Arnedo ◽  
Jorge-Eduardo Rico-Fontalvo ◽  
Nehomar Pájaro-Galvis ◽  
Víctor Leal-Martínez ◽  
Emilio Abuabara-Franco ◽  
...  

2020 ◽  
Vol 26 (12) ◽  
pp. 1486-1496
Author(s):  
Edy Kornelius ◽  
Chien-Ning Huang ◽  
Shih-Chang Lo ◽  
Yu-Hsun Wang ◽  
Yi-Sun Yang

Objective: The efficacy of dipeptidyl-peptidase 4 inhibitors (DPP4is) in advanced diabetic kidney disease (DKD) is unknown. We investigated whether DPP4is confer renal protective benefits in DKD patients. Methods: We conducted a retrospective cohort study between 2012 and 2018 in Taiwan. We only included type 2 diabetes patients with estimated glomerular filtration rate (eGFR) between 30 and 90 mL/min/1.73 m2 and urine albumin to creatinine ratio between 300 and 5,000 mg/g. Patients with DPP4i prescriptions were selected as cases, while non-DPP4i users served as controls. We followed these patients until the presence of composite primary renal endpoints, which was defined by the earliest occur-rence of clinical renal outcomes. Results: A total of 522 patients were included in the analysis, comprising 273 patients with a DPP4i prescription who were selected as cases and 249 patients without DPP4i prescription who were assigned as controls. Median follow-up duration for DPP4i users and nonusers was 2.2 years and 3.4 years, respectively. At baseline, the mean glycated hemoglobin levels for DPP4i users and nonusers were 8.1% and 8.3%, respectively. Among patients with DPP4i prescriptions, there was no reduction in composite primary renal outcome, with a crude hazard ratio (HR) of 1.50 (95% confidence interval [CI], 0.95 to 2.36). Similar results were observed for the risk of persistent eGFR <15 mL/min/1.73 m2, with a HR of 1.68 (95% CI, 0.90 to 3.13), doubling of serum creatinine level, with a HR of 1.05 (95% CI, 0.15 to 7.45), and end-stage renal disease, with a HR of 0.87 (95% CI, 0.14 to 5.19). Conclusion: DPP4i prescription did not reduce the risk of composite renal endpoints in DKD patients. Abbreviations: BMI = body mass index; CI = confidence interval; CVOT = cardiovascular outcomes trial; DPP4i = dipeptidyl-peptidase 4 inhibitor; DKD = diabetic kidney disease; eGFR = estimated glomerular filtration rate; ESRD = end-stage renal disease; HbA1c = glycated hemoglobin; HR = hazard ratio; SGLT2i = sodium-glucose cotransporter 2 inhibitor; T2D = type 2 diabetes; UACR = urine albumin to creatinine ratio


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Thananda Trakarnvanich ◽  
Bancha Satirapoj ◽  
Swangjit Suraamornkul ◽  
Thanit Chirananthavat ◽  
Anoma Sanpatchayapong ◽  
...  

Introduction. Dipeptidyl peptidase-4 (DPP-4) inhibitors improve glycemic control and have pleiotropic effects on kidney injury, albuminuria, and vascular inflammation, especially in animal models. We evaluated the effects of a potent DPP4 inhibitor (gemigliptin) on these processes among patients with diabetic kidney disease (DKD). Methods. This study employed a multicenter, prospective, randomized, placebo-controlled design. A total of 201 participants were enrolled and randomly assigned to one of two groups, one received treatment with 50 mg gemigliptin daily along with standard care for diabetes mellitus for 6 months. The changes in the coronary calcium score (CAC score), cardio-ankle vascular index (CAVI), estimated glomerular filtration rate (eGFR), vascular calcification level, and tubular renal injury marker expression were evaluated at baseline and 6 months. Results. In total, 182 patients completed the study. Significant reductions in hemoglobin A1C levels were observed in both groups. The changes in the CAC score, CAVI, eGFR, and level of proteinuria over the 6 months of the study did not significantly differ between the gemigliptin and control groups. However, biomarkers of vascular calcification, including serum bone alkaline phosphatase and kidney injury, including urine neutrophil gelatinase-associated lipocalin (NGAL)/Cr and urine liver fatty acid-binding protein (L-FABP)/Cr, were improved significantly in the gemigliptin treatment group compared with the control group. No serious adverse events were observed during the study. Conclusion. Our study showed that gemigliptin significantly improved the expression of renal tubular injury biomarkers and vascular calcification levels among patients with DKD; however, gemigliptin did not affect renal function or coronary calcification compared with those observed in the control. A larger study with a longer follow-up is essential to verify these beneficial effects. Clinical Trials. This trial is registered with ClinicalTrials.Gov Identifier NCT04705506.


2021 ◽  
Vol 22 (22) ◽  
pp. 12312
Author(s):  
Agnieszka Przezak ◽  
Weronika Bielka ◽  
Andrzej Pawlik

Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.


Author(s):  
Carlos Morillas ◽  
Luis D’Marco ◽  
María Jesús Puchades ◽  
Eva Solá-Izquierdo ◽  
Carmen Gorriz-Zambrano ◽  
...  

The prevalence of type 2 diabetes mellitus worldwide stands at nearly 9.3% and it is estimated that 20–40% of these patients will develop diabetic kidney disease (DKD). DKD is the leading cause of chronic kidney disease (CKD), and these patients often present high morbidity and mortality rates, particularly in those patients with poorly controlled risk factors. Furthermore, many are overweight or obese, due primarily to insulin compensation resulting from insulin resistance. In the last decade, treatment with sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have been shown to be beneficial in renal and cardiovascular targets; however, in patients with CKD, the previous guidelines recommended the use of drugs such as repaglinide or dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), plus insulin therapy. However, new guidelines have paved the way for new treatments, such as SGLT2i or GLP1-RA in patients with CKD. Currently, the new evidence supports the use of GLP1-RA in patients with an estimated glomerular filtration rate (eGFR) of up to 15 mL/min/1.73 m2 and an SGLT2i should be started with an eGFR > 60 mL/min/1.73 m2. Regarding those patients in advanced stages of CKD, the usual approach is to switch to insulin. Thus, the add-on of GLP1-RA and/or SGLT2i to insulin therapy can reduce the dose of insulin, or even allow for its withdrawal, as well as achieve a good glycaemic control with no weight gain and reduced risk of hypoglycaemia, with the added advantage of cardiorenal benefits.


Diabetes ◽  
2019 ◽  
Vol 68 (5) ◽  
pp. 1094-1094
Author(s):  
Radica Z. Alicic ◽  
Joshua J. Neumiller ◽  
Emily J. Johnson ◽  
Brad Dieter ◽  
Katherine R. Tuttle

Sign in / Sign up

Export Citation Format

Share Document