scholarly journals A rare BRAF V600E mutation detected by next‐generation sequencing in a superficial spreading melanoma: case report and potential diagnostic implications

Author(s):  
I. Proietti ◽  
S. Michelini ◽  
M. Di Fraia ◽  
A. Mambrin ◽  
V. Petrozza ◽  
...  
2014 ◽  
Vol 45 (9) ◽  
pp. 1983-1984 ◽  
Author(s):  
Pierre-Alexandre Just ◽  
Anne Audebourg ◽  
Eric Pasmant ◽  
Eric Clauser ◽  
Agnès Carlotti ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunqiao Feng ◽  
Lin Han ◽  
Mei Yue ◽  
Dixiao Zhong ◽  
Jing Cao ◽  
...  

Abstract Background Langerhans cell histiocytosis (LCH) is a rare neoplastic disease that occurs in both children and adults, and BRAF V600E is detected in up to 64% of the patients. Several studies have discussed the associations between BRAF V600E mutation and clinicopathological manifestations, but no clear conclusions have been drawn regarding the clinical significance of the mutation in pediatric patients. Results We retrieved the clinical information for 148 pediatric LCH patients and investigated the BRAF V600E mutation using next-generation sequencing alone or with droplet digital PCR. The overall positive rate of BRAF V600E was 60/148 (41%). The type of sample (peripheral blood and formalin-fixed paraffin-embedded tissue) used for testing was significantly associated with the BRAF V600E mutation status (p-value = 0.000 and 0.000). The risk of recurrence declined in patients who received targeted therapy (p-value = 0.006; hazard ratio 0.164, 95%CI: 0.046 to 0.583). However, no correlation was found between the BRAF V600E status and gender, age, stage, specific organ affected, TP53 mutation status, masses close to the lesion or recurrence. Conclusions This is the largest pediatric LCH study conducted with a Chinese population to date. BRAF V600E in LCH may occur less in East Asian populations than in other ethnic groups, regardless of age. Biopsy tissue is a more sensitive sample for BRAF mutation screening because not all of circulating DNA is tumoral. Approaches with low limit of detection or high sensitivity are recommended for mutation screening to avoid type I and II errors.


2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Phedias Diamandis ◽  
Ruben Ferrer-Luna ◽  
Raymond Y. Huang ◽  
Rebecca D. Folkerth ◽  
Azra H. Ligon ◽  
...  

2021 ◽  
Author(s):  
Martin G. Cook ◽  
Barry W. E. M. Powell ◽  
Megan E. Grant ◽  
Adele C. Green

AbstractDesmoplastic melanoma commonly occurs on the head and neck in a pure form, but occasionally, it occurs in a mixed tumor with another type, usually superficial spreading melanoma (SSM), and rarely as a metastasis from a primary SSM. We report here a primary SSM on the leg of a 32-year-old male which metastasised to lymph nodes, and 10 years later recurred at the primary site initially with mixed features but evolving to resemble a uniformly desmoplastic, deeply invasive melanoma. This unusual case has implications for clinical management and is additionally notable for its reversal in behavior, from metastatic to local infiltrative type, correlating with the change in morphology.


2018 ◽  
Vol 3 (2) ◽  
pp. 178-184 ◽  
Author(s):  
M Rabie Al-Turkmani ◽  
Kelley N Godwin ◽  
Jason D Peterson ◽  
Gregory J Tsongalis

AbstractBackgroundMolecular tests have been increasingly used in the management of various cancers as more targeted therapies are becoming available as treatment options. The Idylla™ system is a fully integrated, cartridge-based platform that provides automated sample processing (deparaffinization, tissue digestion, and DNA extraction) and real-time PCR-based mutation detection with all reagents included in a single-use cartridge. This retrospective study aimed at evaluating both the Idylla KRAS and NRAS-BRAF-EGFR492 Mutation Assay cartridges (research use only) against next-generation sequencing (NGS) by using colorectal cancer (CRC) tissue samples.MethodsForty-four archived formalin-fixed paraffin-embedded (FFPE) CRC tissue samples previously analyzed by targeted NGS were tested on the Idylla system. Among these samples, 17 had a mutation in KRAS proto-oncogene, GTPase (KRAS), 5 in NRAS proto-oncogene, GTPase (NRAS), and 12 in B-Raf proto-oncogene, serine/threonine kinase (BRAF) as determined using the Ion AmpliSeq 50-gene Cancer Hotspot Panel v2. The remaining 10 samples were wild-type for KRAS, NRAS, and BRAF. Two 10-μm FFPE tissue sections were used for each Idylla run, 1 for the KRAS cartridge, and 1 for the NRAS-BRAF-EGFR492 cartridge. All cases met the Idylla minimum tumor content requirement for KRAS, NRAS, and BRAF (≥10%). Assay reproducibility was evaluated by testing commercial controls derived from human cell lines, which had an allelic frequency of 50% and were run in triplicate.ResultsThe Idylla system successfully detected all mutations previously identified by NGS in KRAS (G12C, G12D, G12V, G13D, Q61K, Q61R, A146T), NRAS (G12V, G13R, Q61H), and BRAF (V600E). Compared with NGS, Idylla had a sensitivity of 100%. Analysis of the mutated commercial controls demonstrated agreement with the expected result for all samples and 100% reproducibility. The Idylla system produced results quickly with a turnaround time of approximately 2 h.ConclusionThe Idylla system offers reliable and sensitive testing of clinically actionable mutations in KRAS, NRAS, and BRAF directly from FFPE tissue sections.


Sign in / Sign up

Export Citation Format

Share Document