scholarly journals Frequency detection of BRAF V600E mutation in a cohort of pediatric langerhans cell histiocytosis patients by next-generation sequencing

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunqiao Feng ◽  
Lin Han ◽  
Mei Yue ◽  
Dixiao Zhong ◽  
Jing Cao ◽  
...  

Abstract Background Langerhans cell histiocytosis (LCH) is a rare neoplastic disease that occurs in both children and adults, and BRAF V600E is detected in up to 64% of the patients. Several studies have discussed the associations between BRAF V600E mutation and clinicopathological manifestations, but no clear conclusions have been drawn regarding the clinical significance of the mutation in pediatric patients. Results We retrieved the clinical information for 148 pediatric LCH patients and investigated the BRAF V600E mutation using next-generation sequencing alone or with droplet digital PCR. The overall positive rate of BRAF V600E was 60/148 (41%). The type of sample (peripheral blood and formalin-fixed paraffin-embedded tissue) used for testing was significantly associated with the BRAF V600E mutation status (p-value = 0.000 and 0.000). The risk of recurrence declined in patients who received targeted therapy (p-value = 0.006; hazard ratio 0.164, 95%CI: 0.046 to 0.583). However, no correlation was found between the BRAF V600E status and gender, age, stage, specific organ affected, TP53 mutation status, masses close to the lesion or recurrence. Conclusions This is the largest pediatric LCH study conducted with a Chinese population to date. BRAF V600E in LCH may occur less in East Asian populations than in other ethnic groups, regardless of age. Biopsy tissue is a more sensitive sample for BRAF mutation screening because not all of circulating DNA is tumoral. Approaches with low limit of detection or high sensitivity are recommended for mutation screening to avoid type I and II errors.

2020 ◽  
Vol 6 (11) ◽  
pp. 1156-1158
Author(s):  
Warren H. Chan ◽  
Aatman Shah ◽  
Gordon Bae ◽  
Caely Hambro ◽  
Beth A. Martin ◽  
...  

2020 ◽  
Vol 156 (7) ◽  
pp. 817 ◽  
Author(s):  
Sharad Khurana ◽  
Jason C. Sluzevich ◽  
Rong He ◽  
Danielle K. Reimer ◽  
Mohamed A. Kharfan-Dabaja ◽  
...  

2012 ◽  
Vol 14 (6) ◽  
pp. 602-612 ◽  
Author(s):  
Maurice Chan ◽  
Shen Mo Ji ◽  
Zhen Xuan Yeo ◽  
Linda Gan ◽  
Eric Yap ◽  
...  

2018 ◽  
Vol 3 (2) ◽  
pp. 178-184 ◽  
Author(s):  
M Rabie Al-Turkmani ◽  
Kelley N Godwin ◽  
Jason D Peterson ◽  
Gregory J Tsongalis

AbstractBackgroundMolecular tests have been increasingly used in the management of various cancers as more targeted therapies are becoming available as treatment options. The Idylla™ system is a fully integrated, cartridge-based platform that provides automated sample processing (deparaffinization, tissue digestion, and DNA extraction) and real-time PCR-based mutation detection with all reagents included in a single-use cartridge. This retrospective study aimed at evaluating both the Idylla KRAS and NRAS-BRAF-EGFR492 Mutation Assay cartridges (research use only) against next-generation sequencing (NGS) by using colorectal cancer (CRC) tissue samples.MethodsForty-four archived formalin-fixed paraffin-embedded (FFPE) CRC tissue samples previously analyzed by targeted NGS were tested on the Idylla system. Among these samples, 17 had a mutation in KRAS proto-oncogene, GTPase (KRAS), 5 in NRAS proto-oncogene, GTPase (NRAS), and 12 in B-Raf proto-oncogene, serine/threonine kinase (BRAF) as determined using the Ion AmpliSeq 50-gene Cancer Hotspot Panel v2. The remaining 10 samples were wild-type for KRAS, NRAS, and BRAF. Two 10-μm FFPE tissue sections were used for each Idylla run, 1 for the KRAS cartridge, and 1 for the NRAS-BRAF-EGFR492 cartridge. All cases met the Idylla minimum tumor content requirement for KRAS, NRAS, and BRAF (≥10%). Assay reproducibility was evaluated by testing commercial controls derived from human cell lines, which had an allelic frequency of 50% and were run in triplicate.ResultsThe Idylla system successfully detected all mutations previously identified by NGS in KRAS (G12C, G12D, G12V, G13D, Q61K, Q61R, A146T), NRAS (G12V, G13R, Q61H), and BRAF (V600E). Compared with NGS, Idylla had a sensitivity of 100%. Analysis of the mutated commercial controls demonstrated agreement with the expected result for all samples and 100% reproducibility. The Idylla system produced results quickly with a turnaround time of approximately 2 h.ConclusionThe Idylla system offers reliable and sensitive testing of clinically actionable mutations in KRAS, NRAS, and BRAF directly from FFPE tissue sections.


2017 ◽  
Vol 64 (10) ◽  
pp. 947-954 ◽  
Author(s):  
Atsushi Hattori ◽  
Yuko Katoh-Fukui ◽  
Akie Nakamura ◽  
Keiko Matsubara ◽  
Tsutomu Kamimaki ◽  
...  

2012 ◽  
Vol 19 (3) ◽  
pp. 691-698 ◽  
Author(s):  
Fiamma Buttitta ◽  
Lara Felicioni ◽  
Maela Del Grammastro ◽  
Giampaolo Filice ◽  
Alessia Di Lorito ◽  
...  

2019 ◽  
Vol 20 (13) ◽  
pp. 3126 ◽  
Author(s):  
Martyna Borowczyk ◽  
Ewelina Szczepanek-Parulska ◽  
Szymon Dębicki ◽  
Bartłomiej Budny ◽  
Frederik A. Verburg ◽  
...  

We aimed to identify differences in mutational status between follicular thyroid adenoma (FTA) and follicular thyroid cancer (FTC). The study included 35 patients with FTA and 35 with FTC. DNA was extracted from formalin-fixed paraffin-embedded (FFPE) samples from thyroidectomy. Next-generation sequencing (NGS) was performed with the 50-gene Ion AmpliSeq Cancer Hotspot Panel v2. Potentially pathogenic mutations were found in 14 (40%) FTA and 24 (69%) FTC patients (OR (95%CI) = 3.27 (1.22−8.75)). The number of mutations was higher in patients with FTC than FTA (p-value = 0.03). SMAD4 and STK11 mutations were present only in patients with FTA, while defects in FBXW7, JAK3, KIT, NRAS, PIK3CA, SMARCB1, and TP53 were detected exclusively in FTC patients. TP53 mutations increased the risk of FTC; OR (95%CI) = 29.24 (1.64–522.00); p-value = 0.001. FLT3-positivity was higher in FTC than in the FTA group (51.4% vs. 28.6%; p-value = 0.051). The presence of FLT3 and TP53 with no RET mutations increased FTC detectability by 17.1%, whereas the absence of FLT3 and TP53 with a presence of RET mutations increased FTA detectability by 5.7%. TP53 and FLT3 are candidate markers for detecting malignancy in follicular lesions. The best model to predict FTA and FTC may consist of FLT3, TP53, and RET mutations considered together.


2018 ◽  
Vol 156 (10) ◽  
pp. 1196-1204 ◽  
Author(s):  
Camilo Mestanza ◽  
Ricardo Riegel ◽  
Santiago C. Vásquez ◽  
Diana Veliz ◽  
Nicolás Cruz-Rosero ◽  
...  

AbstractQuinoa (Chenopodium quinoaWilld) is a dicotyledonous annual species belonging to the family Amaranthaceae, which is nutritionally well balanced in terms of its oil, protein and carbohydrate content. Targeting-induced local lesions in genomes (the TILLING strategy) was employed to find mutations in acetolactate synthase (AHAS) genes in a mutant quinoa population. TheAHASgenes were targeted because they are common enzyme target sites for five herbicide groups. Ethyl methane sulfonate (EMS) was used to induce mutations in theAHASgenes; it was found that 2% EMS allowed a mutation frequency of one mutation every 203 kilobases to be established. In the mutant population created, a screening strategy using pre-selection phenotypic data and next-generation sequencing (NGS) allowed identification of a mutation that alters the amino acid composition of this species (nucleotide 1231 codon GTT→ATT, Val→Ile); however, this mutation did not result in herbicide resistance. The current work shows that TILLING combined with the high-throughput of NGS technologies and an overlapping pool design provides an efficient and economical method for detecting induced mutations in pools of individuals.


Sign in / Sign up

Export Citation Format

Share Document