scholarly journals Genetic variation but weak genetic covariation between pre- and post-copulatory episodes of sexual selection in Drosophila melanogaster

2016 ◽  
Vol 29 (8) ◽  
pp. 1535-1552 ◽  
Author(s):  
L. M. Travers ◽  
F. Garcia-Gonzalez ◽  
L. W. Simmons
Genetics ◽  
1984 ◽  
Vol 106 (4) ◽  
pp. 601-612
Author(s):  
Paul M Sharp

ABSTRACT The effect of full-sib inbreeding on competitive male-mating ability (CI♂) in Drosophila melanogaster was investigated in two experiments. In the first, five inbred lines (with reserves) were assessed up to 18 generations. Linear inbreeding depression, of 5.9% per 10% increase in homozygosity, was observed. In a second experiment, 21 inbred lines were tested after three generations of full-sib mating (without reserves), and the decline with inbreeding was more severe, the male competitive index (CI♂) decreasing by 10.7% per 10% increase in F. The difference between these results is attributed to natural selection acting on variation within the inbred lines in extent of homozygosity, which can arise because of the peculiarly strong influence of linkage in Drosophila. Furthermore, differentiation between the lines may have reflected this variation rather than the various effects of different alleles fixed.—These results imply that the genetic variation in male-mating ability is largely due to dominance (no epistasis was detected) and are consonant with the proposition that intermale sexual selection is a very important component of fitness in D. melanogaster. There was no evidence of a positive correlation between male body size and competitive mating ability.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


1984 ◽  
Vol 43 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Billy W. Geer ◽  
Cathy C. Laurie-Ahlberg

SUMMARYGenetic variation in the modulating effect of dietary sucrose was assessed in Drosophila melanogaster by examining 27 chromosome substitution lines coisogenic for the X and second chromosomes and possessing different third isogenic chromosomes derived from natural populations. An increase in the concentration of sucrose from 0·1% to 5% in modified Sang's medium C significantly altered the activities of 11 of 15 enzyme activities in third instar larvae, indicating that dietary sucrose modulates many, but not all, of the enzymes of D. melanogaster. A high sucrose diet promoted high activities of enzymes associated with lipid and glycogen synthesis and low activities of enzymes of the glycolytic and Krebs cycle pathways, reflecting the physiological requirements of the animal. Analyses of variance revealed significant genetic variation in the degrees to which sucrose modulated several enzyme activities. Analysis of correlations revealed some relationships between enzymes in the genetic effects on the modulation process. These observations suggest that adaptive evolutionary change may depend in part on the selection of enzyme activity modifiers that are distributed throughout the genome.


Parasitology ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 767-773 ◽  
Author(s):  
M. C. TINSLEY ◽  
S. BLANFORD ◽  
F. M. JIGGINS

Genetic variation in susceptibility to pathogens is a central concern both to evolutionary and medical biologists, and for the implementation of biological control programmes. We have investigated the extent of such variation in Drosophila melanogaster, a major model organism for immunological research. We found that within populations, different Drosophila genotypes show wide-ranging variation in their ability to survive infection with the entomopathogenic fungus Beauveria bassiana. Furthermore, striking divergence in susceptibility has occurred between genotypes from temperate and tropical African locations. We hypothesize that this may have been driven by adaptation to local differences in pathogen exposure or host ecology. Genetic variation within populations may be maintained by temporal or spatial variation in the costs and benefits of pathogen defence. Insect pathogens are employed widely as biological control agents and entomopathogenic fungi are currently being developed for reducing malaria transmission by mosquitoes. Our data highlight the need for concern about resistance evolution to these novel biopesticides in vector populations.


2017 ◽  
Vol 284 (1858) ◽  
pp. 20170424 ◽  
Author(s):  
Li Yun ◽  
Patrick J. Chen ◽  
Amardeep Singh ◽  
Aneil F. Agrawal ◽  
Howard D. Rundle

Recent experiments indicate that male preferential harassment of high-quality females reduces the variance in female fitness, thereby weakening natural selection through females and hampering adaptation and purging. We propose that this phenomenon, which results from a combination of male choice and male-induced harm, should be mediated by the physical environment in which intersexual interactions occur. Using Drosophila melanogaster , we examined intersexual interactions in small and simple (standard fly vials) versus slightly more realistic (small cages with spatial structure) environments. We show that in these more realistic environments, sexual interactions are less frequent, are no longer biased towards high-quality females, and that overall male harm is reduced. Next, we examine the selective advantage of high- over low-quality females while manipulating the opportunity for male choice. Male choice weakens the viability advantage of high-quality females in the simple environment, consistent with previous work, but strengthens selection on females in the more realistic environment. Laboratory studies in simple environments have strongly shaped our understanding of sexual conflict but may provide biased insight. Our results suggest that the physical environment plays a key role in the evolutionary consequences of sexual interactions and ultimately the alignment of natural and sexual selection.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zeeshan Ali Syed ◽  
Vanika Gupta ◽  
Manas Geeta Arun ◽  
Aatashi Dhiman ◽  
Bodhisatta Nandy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document