Modeling of process parameters to predict the efficiency of shallots stem cutting machine using multiple regression and artificial neural network

Author(s):  
Mariya Anthony Tito Anand ◽  
Sugumar Anandakumar ◽  
Akash Pare ◽  
Veerapandian Chandrasekar ◽  
Natarajan Venkatachalapathy
2011 ◽  
Vol 366 ◽  
pp. 103-107 ◽  
Author(s):  
Bo Zhao

The artificial neural network and multiple regression models have been developed to predict the evenness of cotton ring yarn with process parameters such as front roller speed, spindle speed, nip gauge, back draft zone time and roving twist. The efficiencies of prediction of the two models have been experimentally verified, and the predicted evennesses of cotton ring yarns from both the models have been compared statistically. An attempt has been made to study the effect of process parameters on yarn evenness. The MSE and mean absolute error of ANN modelare lower than that of multiple regression model. The results show that the performances of prediction of ANN models are more accurate than those of multiple regression models.


Author(s):  
Sherwan Mohammed Najm ◽  
Imre Paniti

AbstractIncremental Sheet Forming (ISF) has attracted attention due to its flexibility as far as its forming process and complexity in the deformation mode are concerned. Single Point Incremental Forming (SPIF) is one of the major types of ISF, which also constitutes the simplest type of ISF. If sufficient quality and accuracy without defects are desired, for the production of an ISF component, optimal parameters of the ISF process should be selected. In order to do that, an initial prediction of formability and geometric accuracy helps researchers select proper parameters when forming components using SPIF. In this process, selected parameters are tool materials and shapes. As evidenced by earlier studies, multiple forming tests with different process parameters have been conducted to experimentally explore such parameters when using SPIF. With regard to the range of these parameters, in the scope of this study, the influence of tool material, tool shape, tool-end corner radius, and tool surface roughness (Ra/Rz) were investigated experimentally on SPIF components: the studied factors include the formability and geometric accuracy of formed parts. In order to produce a well-established study, an appropriate modeling tool was needed. To this end, with the help of adopting the data collected from 108 components formed with the help of SPIF, Artificial Neural Network (ANN) was used to explore and determine proper materials and the geometry of forming tools: thus, ANN was applied to predict the formability and geometric accuracy as output. Process parameters were used as input data for the created ANN relying on actual values obtained from experimental components. In addition, an analytical equation was generated for each output based on the extracted weight and bias of the best network prediction. Compared to the experimental approach, analytical equations enable the researcher to estimate parameter values within a relatively short time and in a practicable way. Also, an estimate of Relative Importance (RI) of SPIF parameters (generated with the help of the partitioning weight method) concerning the expected output is also presented in the study. One of the key findings is that tool characteristics play an essential role in all predictions and fundamentally impact the final products.


2010 ◽  
Vol 33 ◽  
pp. 74-78
Author(s):  
B. Zhao

In this work, the artificial neural network model and statistical regression model are established and utilized for predicting the fiber diameter of spunbonding nonwovens from the process parameters. The artificial neural network model has good approximation capability and fast convergence rate, which is used in this research. The results show the artificial neural network model can provide quantitative predictions of fiber diameter and yield more accurate and stable predictions than the statistical regression model, which reveals that the artificial neural network model is based on the inherent principles, and it can yield reasonably good prediction results and provide insight into the relationship between process parameters and fiber diameter.


2018 ◽  
Vol 1 (1) ◽  
pp. 197-204
Author(s):  
Tomasz Cepowski

Abstract The article presents the use of multiple regression method to identify added wave resistance. Added wave resistance was expressed in the form of a four-state nominal function of: “thrust”, “zero”, “minor” and “major” resistance values. Three regression models were developed for this purpose: a regression model with linear variables, nonlinear variables and a large number of nonlinear variables. The nonlinear models were developed using the author's algorithm based on heuristic techniques. The three models were compared with a model based on an artificial neural network. This study shows that non-linear equations developed through a multiple linear regression method using the author’s algorithm are relatively accurate, and in some respects, are more effective than artificial neural networks.


Mechanika ◽  
2020 ◽  
Vol 26 (6) ◽  
pp. 540-544
Author(s):  
Jayaraj JEEVAMALAR ◽  
Sundaresan RAMABALAN ◽  
Chinnamuthu SENTHILKUMAR

Modelling is used for correlating the relationship between the input process parameters and the output responses during the machining process. To characterize real-world systems of considerable complexity, an Artificial Neural Network (ANN) model is regularly used to replace the mathematical approximation of the relationship. This paper explains the methodological procedure and the outcome of the ANN modeling process for Electrical Discharge Drilling of Inconel 718 superalloy and hollow tubular copper as tool electrode. The most important process parameters in this work are peak current, pulse on time and pulse off time with machining performances of material removal rate and surface roughness. The experiments were performed by L20 Orthogonal Array. In such conditions, an Artificial Neural Network model is developed using MATLAB programming on the Feed Forward Back Propagation technique was used to predict the responses. The experimental data were separated into three parts to train, test the network and validate the model. The developed model has been confirmed experimentally for training and testing in considering the number of iterations and mean square error convergence criteria. The developed model results are to approximate the responses fairly exactly. The model has the mean correlation coefficient of 0.96558. Results revealed that the proposed model can be used for the prediction of the complex EDM drilling process.


2020 ◽  
Vol 6 (3) ◽  
pp. 1467-1475 ◽  
Author(s):  
Seyedeh Reyhaneh Shams ◽  
Ali Jahani ◽  
Mazaher Moeinaddini ◽  
Nematollah Khorasani

Author(s):  
Abdullahi Abubakar Masud ◽  
Firdaus Muhammad-Sukki ◽  
Ricardo Albarracin ◽  
Jorge Alfredo Ardila-Rev ◽  
Siti Hawa Abu-Bakar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document